Table of Contents

Medical Director’s Letter:
A Legacy of Hope—35 Years of Excellence ... 2

Grand Opening Celebrations 4

Programs of Focus 6
 Personalized and Precision Medicine
 Phase I Innovative Clinical Trials Center
 “Swim Across America” Program
 Supports Innovative Clinical Trials Center
 Oncology Outpatient Clinic
 Progress on the Dedicated Inpatient Hospital
 Reaccreditation from the Commission on Cancer and Foundation for the Accreditation of Cellular Therapy
 New Integrative Medicine Program
 Skull Base Surgery
 Surgical Oncology Program

Patient Support 12
 Community Events/Outreach
 Patient Spotlight: Brady Buegeler
 Survivors Celebrations
 Barrett Lectureship
 Sole Sisters™
 Blood and Marrow Transplantation Reunion
 Volunteer Spotlight: Debbie Finn
 Healing with Support
 Social Networking
 Demonstration Kitchen
 Dedication of the Horner Family Chapel
 Baylor Cancer Center Tour App

Cancer Registry 20
 Department Update
 Summary of 2010 Cancer Registry Data

Patient Care Evaluation Studies 24
 Cervical Cancer
 Melanoma

Research 32
 Precision Medicine Approaches to Treatment of Advanced Melanoma
 Golfers Against Cancer Fundraising Event for Melanoma Research
 Membership in the Multiple Myeloma Research Consortium
 Research on Triple-Negative Breast Cancer
 Clinical Oncology Research Office
 Office of Scientific Publications
 Presentations at ASCO
 Baylor Charles A. Sammons Cancer Center at Dallas Joins Cancer Immunology Trials Network
 Patient Accruals by Tumor Type

Education 37
 Medical Oncology Fellowship Program
 Lung Cancer Symposium
 Oncology Lectureships
 Physician Spotlight: Fellow Days: The Early 80s with Steven R. Paulson, MD

Publications 40
 Celebrating 35 Years of Philanthropy . 44
 Capital and Technology
 Research
 Patient-Centered Programs
 Celebrating Women

Contact Information 47
 Campus and Area Maps 48
Medical Director’s Letter

This past March we opened the new Baylor Charles A. Sammons Cancer Center at Dallas and announced that “Hope Has a New Home.” It is important that as we boldly march into the future, we embrace our roots and create a seamless blend of progress and tradition.

Reprinted in this annual report is Marvin J. Stone, MD, medical director’s letter from the initial Baylor Sammons Cancer Center annual report in 1991. The three words that summarize our mission at that time, “help, hope, and healing,” still ring true today, even though much has changed:

- We now treat more than 8,000 unique patients each year, with more than 80,000 outpatient visits.
- The new outpatient center has 467,000 square feet of space for patient care, research, and education.
- A new 120-bed dedicated inpatient cancer hospital is poised to open.
- The blood and marrow transplant program has now performed over 4,500 transplants.
- Our clinical research program now offers over 100 clinical trials at any one time, with close to 800 patients participating annually.
- More than 20 multidisciplinary tumor site conferences reviewing patient cases, are held each month.
- A patient navigation program with five full-time navigators assists patients through all aspects of their diagnosis, treatment, and post-treatment care.
- The Virginia R. Cvetko Center provides patient/family education programs and has offerings that include art, music, and a nutrition demonstration kitchen. It is also home to an integrative medicine program.
- Ernie’s Appearance Center is our boutique that offers fashion and services for all patients with cancer.

Now in its 35th year, Baylor Sammons Cancer Center’s legacy of hope continues. Highlighted in these pages are stories about celebrations of survivors, new developments in treatment through precision medicine, and the dedication of volunteers and those who raise awareness and funds to support cancer care, research, and education. In 1976, only one of every two patients survived their cancer diagnosis; now it is two of every three.

What the next 35 years will bring we can only imagine.

Alan M. Miller, MD, PhD
Chief of oncology, Baylor Health Care System and medical director, Baylor Charles A. Sammons Cancer Center at Dallas

We share these three concepts with each one of the more than 2,000 new patients we serve each year through a combination of sophisticated equipment and technology and straight-from-the-heart compassion. This synthesis of “high-tech and high-touch” forms the nucleus upon which the Sammons Cancer Center was built and continues to grow.

Located in the seven-story Sammons Cancer Center building, the center encompasses multidisciplinary services throughout Baylor’s Dallas campus. Fourteen Baylor areas form a dynamic and comprehensive network of services, earning the Sammons Cancer Center its “Center of Excellence” title. Some of these components are:

- the second largest medical staff department at Baylor University Medical Center with more than 140 private practice physicians;
- a 30-bed unit dedicated to inpatient cancer care located on the sixth floor of Erik and Margaret Jonsson Medical and Surgical Hospital;
- a radiation therapy division featuring sophisticated technology and a highly-skilled staff;
- a medical oncology/hematology outpatient area where a primary care nurse assigned to each patient works with the patient's physician to ensure continuity of care throughout the course of diagnosis and treatment;
- 10 beds for post-breast surgery patients on the 10th floor of A. Webb Roberts Hospital;
- a 10-bed gynecological oncology program on the seventh floor of George W. Truett Memorial Hospital;
- one of the leading bone marrow transplantation programs in the United States;
- a clinical research program offering more than 45 experimental protocols for selected patients; and
- a broad-based patient/family education program that provides information and support through nine specialized programs.

Through these and other operational aspects, Sammons Cancer Center’s efforts in 1991 included several significant advances in the fight against cancer. The following pages offer an overview of our successes this past year and a more in-depth look at three areas of which we are particularly proud.

If a theme emerges from these remembrances, it is that of shared knowledge, an essential part of the Sammons Cancer Center’s approach to patient care, research and education. Whether through professional symposia, clinical trials, publication of research, public health screenings or patient support groups, the staff and patients at Sammons Cancer Center share help, hope, and healing with all who enter.

Marvin J. Stone, MD
Director and chief of oncology
Baylor Sammons Cancer Center
Hope Has a New Home

In March 2011, Baylor University Medical Center at Dallas opened the doors to the new outpatient cancer center. The largest outpatient facility of its kind in North Texas, the new 10-story, 467,000-square-foot cancer center offers advanced technology combined with highly trained medical staff to meet the needs of patients and their families in a supportive, compassionate environment.

“This center brings together in one location quality patient care, advances in research, education of the next generation of cancer leaders, and a host of amenities designed specifically for patients,” said Alan Miller, MD, PhD, chief of oncology for Baylor Health Care System, medical director of Baylor Charles A. Sammons Cancer Center and physician on the medical staff at Baylor University Medical Center at Dallas. “There certainly is no model in North Texas that is anything like this.”

Several grand opening celebrations were held throughout the month to usher in this new era in cancer care:

- Baylor Health Care System employee open house
- Ribbon-cutting ceremony
- Cancer survivors and public grand opening celebrations

Thank you, Donna

Donna Bowers came to Baylor Health Care System while still in high school and over the following thirty years served numerous roles in the organization becoming the vice president for oncology in 2004. Upon assuming that new position Donna was charged with taking on one of the most ambitious projects in the history of Baylor and charting the course of cancer care in North Texas for decades to come. The result of Donna’s leadership and vision is the magnificent new Baylor Charles A. Sammons Cancer Center which opened this past March and the Baylor Cancer Hospital, the only dedicated cancer hospital in North Texas, which is opening in 2012. In November of 2011 Donna announced that she was leaving Baylor to take on a new challenge as the senior vice president for hospital strategy for McKesson Health Specialties. Baylor will miss Donna and her leadership but we will be reminded of her everyday as we look upon her legacy.
Employee Open House

Left: Baylor Health Care System employees enjoying their private introduction to the new cancer center.

Ribbon Cutting Ceremony

Right: Journalist and former news anchor, Paula Zahn, delivered the keynote address.

Below: Baylor Health Care System leadership, donors and community leaders officially opened the new cancer center.

Cancer Survivors and Public Grand Opening Celebrations

Above: In celebration of cancer survivors, white doves were released symbolizing hope.

Below: Public grand opening celebration.
Milestones on the Road to Hope

1976
- Baylor Charles A. Sammons Cancer Center opens as an integral unit of Baylor University Medical Center Department of Oncology
- A medical oncology-hematology fellowship is established

1979
- Site tumor committees and multidisciplinary conferences begin

1981
- Virginia R. Cvetko Patient Education and Support Center opens

1982
- The Charlotte Johnson Barrett Psychosocial Lectureship is established
- A Clinac 25 linear accelerator is installed
- The Cancer Immunology Research Laboratory opens
- Cancer center medical and executive committees are formed

Programs of Focus 2011

Personalized and Precision Medicine: Phase I Innovative Clinical Trials Center

At the new outpatient cancer center, researchers have additional space and facilities for new research programs. The advanced care available for cancer patients at Baylor Charles A. Sammons Cancer Center at Dallas is fueled by an aggressive program in basic and translational research. This research is increasingly focused on personalized and precision medicine, using therapies targeted to specific patient characteristics and specific pathways in the biology of individual cancers.

The centerpiece for clinical cancer research at Baylor Sammons Cancer Center is the new Innovative Clinical Trials Center (ICTC). The ICTC provides patients with easy access to new therapies by consolidating all phase I/II trials from Baylor researchers and their academic and clinical partners in one 5,000 plus square-foot facility located in the new outpatient cancer center. Patient participation in a trial will be simplified by providing one location for clinical examinations, infusions, imaging studies, sample collection for lab work, and follow-up. Carlos Becerra, MD, a medical oncologist with Texas Oncology and a physician on the medical staff at Baylor Dallas, is the medical director of the ICTC.

“Swim Across America” Program Supports the New Innovative Clinical Trials Center

“Swim Across America” (SAA), a national organization, holds dozens of community-oriented open-water swims from coast to coast, each raising funds for local beneficiaries supporting cancer research, prevention, and treatment. On June 11, 2011, SAA sponsored the inaugural open-water swim at Lake Ray Hubbard at the Harbor in Rockwall, Texas, to benefit the new Innovative Clinical Trials Center (ICTC) at Baylor Charles A. Sammons Cancer Center at Dallas. The event drew more than 300 participants from across the United States and the world and raised $350,000 that will be used to support clinical trials at the ICTC. Among those swimming at the event were Alan M. Miller, MD, PhD, chief of oncology for Baylor Health Care System and medical director of Baylor Sammons Cancer Center.
Center, and Carlos Becerra, MD, medical director of the ICTC and a master swimmer.

Baylor Sammons Cancer Center joins an elite slate of beneficiaries supported by SAA, including Memorial Sloan-Kettering Cancer Center, Dana Farber Cancer Institute, Cardinal Bernardin Cancer Center at Loyola University Medical Center, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, and the University of California, San Francisco Children’s Hospital.

According to Daniel Watters, chairman of the local SAA committee and a member of the 1988 Olympic swim team, SAA chose to support the ICTC at Baylor Sammons Cancer Center after an intensive search for the best of the best in terms of cancer research and treatment in North Texas. This year’s open-water swim represents the first year of an initial 4-year commitment. “Our goal is to raise in excess of $1 million during those 4 years,” said Mr. Watters. “We hope and anticipate that this commitment will be extended for many, many more years after that.”

Oncology Outpatient Clinic
A major aspect of the new Baylor Charles A. Sammons Cancer Center at Dallas is the Oncology Outpatient Clinic. The new location in Suite 250 of the cancer center has expanded services, as well as patient navigators and other healing services for patients in one convenient location.

The following services are available in the outpatient clinic:

- Bone and soft tissue tumor clinic
- Dental clinic
- Head and neck cancer clinic
- Physical rehabilitation, including speech therapy, a specialized gym with physical therapy, as well as occupational therapy
- Skin cancer screening clinic
- Support and palliative care services

While many of these services were previously offered, they are being expanded, and new services will enhance the treatment experience.

The dental clinic is a new service in the outpatient clinic that will benefit patients. “Checking dental health before, during, and after treatment is a very important part of the process,” said Sylvia Coats, director of Baylor Sammons Cancer Center administration. “Chemotherapy and surgery can affect oral health, and patients can also have issues from immunosuppression or infections. We now have the ability to monitor dental health for them all in a convenient location to help avoid problems.”

The oncology outpatient clinic also offers free, self-referral monthly skin cancer screening. Such screenings were previously offered only once a year. In 2011, a total of 151 patients were screened. Of this total number, 85 had abnormal results and were encouraged to follow up with their physician.
Progress on the Dedicated Inpatient Cancer Hospital

Baylor Cancer Hospital, the first dedicated cancer hospital in North Texas, is set to begin a phased opening as part of Baylor University Medical Center at Dallas' cancer services expansion. The new inpatient hospital is a major renovation of the existing Collins building and part of the adjacent Sammons building on the Baylor Dallas campus. It will house 120 beds and a pharmacy, as well as patient and family support areas and the bone marrow transplant unit. The hospital will be connected by the Collins Family “Bridge of Hope” skybridge to the recently opened outpatient cancer center. The opening timeline of the new Baylor Cancer Hospital is shown in the figure to the right.

The new Baylor Cancer Hospital will have many of the features that patients and their families want. Donna Bowers, vice president of oncology for Baylor Health Care System, said: “We will have larger patient rooms with expanded access for family members, more dining areas, and special places like the healing gardens. We want to provide a place for healing, calming, and spirituality for everyone involved in the cancer journey.”

<table>
<thead>
<tr>
<th>Location</th>
<th>Unit/Service</th>
<th>Estimated Opening Date*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basement</td>
<td>Medical equipment maintenance</td>
<td>January 2012</td>
</tr>
<tr>
<td>1st floor</td>
<td>Apheresis unit, Evaluation and treatment center, infusion center, interventional radiology, Food services</td>
<td>February 2012, March 2012</td>
</tr>
<tr>
<td>2nd floor</td>
<td>Blood and marrow transplant processing lab, Nursing unit</td>
<td>January 2012, December 2012</td>
</tr>
<tr>
<td>3rd floor</td>
<td>Pharmacy</td>
<td>January 2012</td>
</tr>
<tr>
<td>4th floor</td>
<td>Nursing unit</td>
<td>December 2012</td>
</tr>
<tr>
<td>5th floor</td>
<td>Nursing unit</td>
<td>December 2012</td>
</tr>
<tr>
<td>6th floor</td>
<td>Nursing unit for leukemias and lymphomas</td>
<td>January 2012</td>
</tr>
<tr>
<td>7th floor</td>
<td>Blood and marrow transplant nursing unit</td>
<td>January 2012</td>
</tr>
<tr>
<td>Various floors</td>
<td>Family support areas, care coordination, nutrition, and social work</td>
<td>January 2012</td>
</tr>
</tbody>
</table>

*Estimated opening dates may change without notice.

Reaccreditations from the Commission on Cancer and Foundation for the Accreditation of Cellular Therapy

Baylor University Medical Center at Dallas' cancer program underwent a reaccreditation survey by the Commission on Cancer (CoC) on September 1, 2011, receiving full accreditation with commendation as a Teaching Hospital Cancer Program. Baylor Dallas has been continuously accredited by the CoC since January 1962. Areas of commendation included exceptional clinical trial accrual rates, active community outreach, timely and accurate data submissions, quality improvements, and performance of outcomes analyses each year. The surveyor also made favorable comments on the excellent...
cancer conferences and the percentage of oncology-certified nurses on staff.

Since its inception in 1922, the CoC’s goal has been to reduce the morbidity and mortality of cancer through education, standard setting, and the monitoring of quality care. Currently, 1,500 facilities have gained accreditation for their cancer program, and it is estimated that accredited programs annually diagnose and treat 71% of all new cancer cases. Accreditation by the CoC is given only to those facilities that have voluntarily committed to providing the highest level of quality care and undergo a rigorous evaluation process and review of their performance, including an on-site review every 3 years.

In July 2011, Baylor’s blood and marrow transplant (BMT) program received reaccreditation from the Foundation for the Accreditation of Cellular Therapy (FACT). This marks 13 continuous years of accreditation by FACT. Baylor initially received accreditation from FACT in 1998, and the Baylor BMT program was one of the first six programs to receive accreditation. FACT is the only accrediting organization that addresses all quality aspects of cellular therapy treatments: clinical care, donor management, cell collection, cell processing, cell storage and banking, cell transportation, cell administration, cell selection, and cell release.

FACT is recognized for its superiority in cellular therapy accreditation by several external organizations, including government agencies and health insurance companies. FACT accreditation is a factor in the ranking of “America’s Best Hospitals” and “America’s Best Children’s Hospitals,” published annually by U.S. News and World Report. Receiving and maintaining FACT accreditation is a pillar of Baylor’s BMT program’s commitment to quality treatment of BMT patients.
New Integrative Medicine Program

The fight against cancer means battling more than just the disease itself. Often the side effects from the disease and the treatment process can be difficult as well. The new integrative medicine program at Baylor Charles A. Sammons Cancer Center at Dallas offers different therapies that work together with traditional medicine to help patients deal with some of these issues.

The program integrates mind, body, and spirit therapies with traditional treatments to provide a new dimension to cancer care. It focuses on each patient’s concerns from a holistic viewpoint and addresses nutritional, physical, emotional, and spiritual aspects of the healing journey.

“Every patient is unique, and individual recommendations are tailored for the patient’s own set of circumstances and concerns,” said Carolyn Matthews, MD, a gynecologic oncologist on the medical staff at Baylor University Medical Center at Dallas and medical director of the integrative medicine program. Additional therapies offered are nutritional guidance, mind-body medicine, guided imagery, and breathing for stress relief and relaxation. Personalized exercise programs are also part of integrative therapies.

“Integrative medicine contributes to all the incredible advances made in traditional medicine,” said Dr. Matthews. “This is a way to supplement or integrate existing treatment options with ‘low-tech’ approaches, some of which have been around for thousands of years.”

Music and art classes also add a dimension to customized care plans. The integrative medicine program works in conjunction with the Virginia R. Cvetko Patient Education and Support Center.

Skull Base Tumors: Minimally Invasive Surgery to Minimize Trauma to the Brain

The Skull Base Center at Baylor University Medical Center at Dallas is one of the few places in Texas that offers comprehensive treatment for complex tumors in and around the various compartments of the skull base. The skull base is a platform made up of five bones—the ethmoid, sphenoid, occipital, paired frontal, and paired parietal bones—that form the floor of the brain, separating it from other facial structures. The anatomy of this area is complex, with the spinal cord, multiple nerves, and the major blood vessels of the brain, head, and neck passing through openings in the skull base.

Skull base tumors may originate in the paranasal sinuses and extend into the skull base. They may also originate from tissues around the brain (e.g., meningiomas, sarcomas) or represent metastatic foci of disease. Benign tumors, including pituitary tumors and neuromas, often involve the skull base.

The Skull Base Center brings together a multidisciplinary subspecialized team of experts to provide comprehensive and individualized care for patients with skull base lesions. A commitment to minimally invasive surgery has facilitated the creation of surgical techniques that enhance safety and efficacy while reducing morbidity, length of hospital stay, and the likelihood of complications. Amol Bhatki, MD, a surgeon and otolaryngologist on the medical staff at Baylor University Medical Center at Dallas and co-medical director of the Skull Base Center, advises that many tumors can now be safely removed with endoscopic transnasal techniques. “We evaluate the tumors for location, size, vascularity, and whether they are benign or malignant,” he said. “Overall, we are now able to remove more than 50% of them using the transnasal approach. This really decreases the chance of pain or complications; you don’t have to manipulate the brain, so morbidity is decreased and recovery is faster.”

For those patients who are not good candidates for the transnasal approach, some tumors may be removed using focused orbito-zygomatic keyhole craniotomy with extradural dissection, a technique developed at the Skull Base Center. These surgeries involve a small access hole directly over the corridor that leads to the tumor.
While a classical craniotomy would involve traversing the dura and using landmarks in the brain to get to the tumor site, the keyhole craniotomy moves inside the braincase but outside of the dura to the point of closest access to the tumor. This minimizes brain and nerve manipulation. “You have to be very familiar with the anatomy and structures that are there,” said Dr. Bhatki. “These techniques are not in the repertoire of many neurosurgeons.”

A paradigm shift is in progress moving the field of skull base surgery from major open-skull techniques to minimally invasive endoscopic techniques, with the promise of efficacy and reduced morbidity. Patients and physicians alike are seeing the benefit of these new approaches and realizing the importance of receiving care at a high-volume center with experienced clinicians. However, Dr. Bhatki cautioned against a philosophy of trying to fit all patients into this new paradigm: “If you have a hammer, the whole world shouldn’t become a nail. We need to carefully evaluate each patient, then reach into our toolbox and pick the best tool.”

Surgical Oncology, a New Division at Baylor Dallas

In 2010, the Division of Surgical Oncology was created as an academic subunit of the medical staff at Baylor University Medical Center at Dallas. Although some surgeons have always informally identified themselves as surgical oncologists, this new division was formally created to increase the academic activities of clinical surgeons and provide infrastructure to support clinical research.

According to John Preskitt, MD, medical director of surgical oncology, surgeons who have appointments in the Department of Surgery apply through medical staff services to become members of the surgical oncology division. They must fulfill specific requirements, which are reviewed every 2 years:

- An active appointment at Baylor Charles A. Sammons Cancer Center at Dallas and active participation in the site-specific tumor conferences, where cases are discussed and treatment recommendations are made.
- Involved in teaching fellows, residents, medical students, nurses, and other health care professionals.
- Regular attendance at regional and national scientific and professional meetings.
- Involved in an ongoing study or research project. This can include basic science studies, clinical trials, or quality assurance studies. It can also involve such things as website development or enhancement.

Surgeons are not required to be a member of the division in order to perform cancer surgery at Baylor University Medical Center at Dallas, but there are advantages to doing so, especially if they are interested in pursuing research. Quarterly meetings of the faculty provide a fertile environment for the exchange of ideas and establishment of useful networks. Division personnel, including Angelia Drake, RN, BSN, program manager of the Division of Surgical Oncology, Suzanna Newall, MS, CCRP, research analyst I, Ansar Sheikh, CCRP, research analyst II, and LaDonna Brown, executive assistant to Dr. Preskitt, assist clinicians with their research, providing resources and access information. Innovative new resources to support research are being developed. Funding from several sources is available through the division to support research activities.

Dr. Preskitt commented: “The creation and enhancement of this new division and the considerable resources that Baylor University Medical Center at Dallas is putting into this show a commitment to making Baylor a destination treatment center. There are not a lot of places that have the ability or desire to dig deep and put these resources in place.”
Community Events/Outreach
In 2011, Baylor University Medical Center at Dallas hosted several cancer awareness events and screenings. The events covered breast cancer, prostate cancer, head and neck cancer, and lung cancer:

- **For Women for Life™** was held on Saturday, January 22, 2011, and attracted nearly 300 women from across the Dallas area. The event offers free health screenings and presentations by specialists. It is a day that celebrated women’s health.

- The 2011 men’s health education event, **It’s a Guy Thing™**, was held on Saturday, June 11, with 287 participants from the Dallas area. The event was held at the new Baylor Sammons Cancer Center. Health screenings and wellness booths were offered, and a well-received new program called “The Doctor Is In” allowed attendees to ask health questions of physicians. A panel of physicians offered many informative presentations and a question-and-answer session. This panel included Matthew Shuford, MD, urologist; Mark Millard, MD, pulmonologist and medical director of the Baylor Martha Foster Lung Care Center; Brian Hardaway, MD, cardiologist; and Louis Lara, MD, gastroenterologist.

- Baylor entered a video in the Pink Glove Dance video competition, sponsored by Medline Industries, Inc. to support breast cancer awareness and prevention. In the video, the spirit of the pink glove catches on around the hospital campus, from housekeeping to the CEO. Set to Katy Perry’s song “Firework,” the message is that hope can start small but ignite into infinite possibilities. More than 120 facilities, schools, and organizations contributed videos to the contest. After online voting, the winner received $10,000 to donate to a breast cancer charity to help defeat this disease.

- On October 22, 2011, Baylor Sammons Cancer Center and Saks Fifth Avenue Galleria Dallas hosted the annual **Pink Passion®** fashion event in support of Breast Cancer Awareness Month and Baylor’s Celebrating Women fund-raising event. This year, three women were selected at random to receive on-the-spot wardrobe makeovers and make-up consultations from Estee Lauder. A new element added to the event was an “Ask the Expert” segment, which featured Rachael Zent, MD, a surgical oncologist on the medical staff at Baylor Dallas, who answered questions regarding breast cancer prevention and treatment.
Brady Buegeler

Growing up on a farm in South Texas, Brady Buegeler spent a lot of time outside without sunscreen or protective clothing. Because skin cancer runs in his family, he was very careful to check his moles for any abnormality. At Baylor Charles A. Sammons Cancer Center at Dallas, Brady was diagnosed with three early melanomas over a period of 2 months. Each skin cancer was excised completely. Now Brady returns every 3 months for skin exams. “The exams are very thorough,” he said. “Baylor has helped me understand that melanoma is something that can be managed with screening and early diagnosis, as well as the use of sunscreen and wearing hats and long-sleeve shirts. There is life after cancer.”
In honor of the American Cancer Society’s Great American Smoke Out™ on November 11, 2011, Baylor Sammons Cancer Center, TNT: Tobacco-free North Texas and the American Cancer Society hosted Lasso Tobacco, an event to encourage smokers to quit for 1 day with the hope that they will lead a tobacco-free life. Staff set up information booths, which included a pig lung demonstration and strategies for quitting, and reached about 100 people. Quit kits were given to those who committed to kick the habit.

Free community screenings were also offered:

- Baylor Sammons Cancer Center hosted head and neck cancer screenings on April 15 and August 13 in collaboration with the Baylor College of Dentistry. Of the 158 patients who were screened, 30 received abnormal results and were encouraged to follow-up with their physician.

- At Baylor University Medical Center at Dallas’ 2011 prostate cancer screening, 133 men were screened. Abnormal digital rectal exams and/or elevated prostate-specific antigen levels were identified in 45 participants, who were encouraged to seek follow-up care with their physician. If a physician was needed, the patient navigation program helped guide the individual to a urologist or to a program for assistance.

Survivors Celebrations

During the week of June 6 to 10, 2011, the Cvetko Patient Education and Support Center hosted daily celebrations in honor of cancer survivors. Activities included a patient art exhibit, information tables on resources and support groups, a strolling violinist, therapy dogs, clowns, and a performance by Jennifer Youngs, a soprano singer with the Dallas Opera. The week was capped off with a special autograph session with Swim Across America Olympians.

In addition, the Cvetko Center holds separate annual celebrations to honor survivors of prostate, ovarian, and breast cancers. Survivors and their guests are treated to a luncheon, keynote presentation, information and resource tables, and door prize drawings. Many returning survivors say they look forward to this event each year and the opportunity to talk to other survivors.

Speakers at the celebrations were:

Prostate cancer: A panel of physicians on the medical staff at Baylor University Medical Center at Dallas—W. Scott Webster, MD, chief of urology, Thomas Hutson, DO, PharmD, medical oncologist, and Barry Wilcox, MD, radiologist—spoke on the future of prostate cancer treatments.

Ovarian cancer: Anne Fay, ovarian cancer survivor, presented “A Life Interrupted.”

Breast cancer: John Pippen, MD, a medical oncologist on the medical staff at Baylor University Medical Center at Dallas, spoke on steps toward a cure.

Barrett Lectureship

On Thursday, June 30, 2011, the Charlotte Johnson Barrett Lectureship was given by Joan Borysenko, PhD, to a standing room-only crowd in the Tom Hunt Auditorium at Baylor Sammons Cancer Center at Dallas. Dr. Borysenko is a

Art offers a therapeutic atmosphere to patients and can reduce stress and negative emotions. Beautiful touches of artwork can be found throughout Baylor Sammons Cancer Center. The following pages feature a few works of art that are points of interest on the Baylor Cancer Center Tour App.

Title: Sunrise
Artist: Jim Bowman
Date: 2011
Location: Level 1 and 2

“Sunrise” by artist Jim Bowman was completed at Bowman Glass Studio in Dallas. The suspended glass sculpture features hand-blown glass rondels in a variety of colors—orange, yellow, red, and hint of green.
Harvard-trained medical scientist, licensed psychologist, and popular speaker. She wrote the bestseller *Minding the Body, Mending the Mind*, and her most recent books address the tumultuous times we are living in. *It’s Not the End of the World: Developing Resilience in Times of Change* and her newly released *Fried: Why You Burn Out and How to Revive* take the reader beyond survival to an empowered, authentic life.

Her talk, “The Art of Resilience: From Surviving to Thriving,” spoke to cancer patients, but her message was for anyone undergoing change in their lives. Using the cancer patient as her example, she said that being diagnosed with cancer means that you must learn to be comfortable in a place of not knowing. In a sense, it all becomes a rite of passage, comparing life before and after cancer. This is analogous to what many are experiencing today, with the uncertainties in our economy. Her talk was one of learning how to cope, a process that requires realism, a sense of humor, and radical creativity.

The annual Charlotte Johnson Barrett Lectureship was established to address psychosocial issues and concerns of cancer survivors and their families. Charlotte Barrett was a cancer patient who helped establish the first patient support group at Baylor Sammons Cancer Center. After her death in 1982, her family and friends generously established an endowment to support annual programs and seminars relating to cancer patient education and support.

Sole Sisters™

On September 29, 2011, Baylor University Medical Center at Dallas staff cheered on survivors of ovarian and breast cancer as they passed a torch in relay around campus in our first-ever “Sole Sisters™” event. This event promotes awareness of the genetic link between breast and ovarian cancers. This year, a special kick-off rally was held, which featured a performance from the Dallas Cowboys Rhythm & Blue Drumline. After the relay, a special program was held in the Horner Family Chapel.

Lindsay Avner, founder and executive director of Bright Pink, served as keynote speaker and shared her family history of ovarian and breast cancer. Bright Pink is currently the only national organization that focuses exclusively on prevention and early detection of breast and ovarian cancer in high-risk young women.
Blood and Marrow Transplant Reunion
On September 10, 2011, DNA twins were able to meet for the first time at the second annual Blood and Marrow Transplant Reunion. More than 100 survivors and their families were on hand to see Mike Brunt, a blood donor who was in Be The Match Registry® for more than 20 years before being called to donate, meet Luke Longacre, the patient whose life he saved by giving peripheral blood stem cells. Mike, who lives in North Carolina and works in the finance industry, said the collection was very easy, and he was thrilled to learn that his patient recovered well. When he was asked to come and meet Luke in person, he jumped at the chance!

At the reunion, Luke and his family sat in the front row, waiting for the moment when he could say “thank you” to his donor. Thanks to Mike, Luke is able to work at a local high school in theatre and teach children the importance of incorporating the arts in their education.

The event also featured a special performance by illusionist Jim Munroe, a leukemia survivor who received a transplant. Jim engaged the audience with mind-boggling tricks and shared his story of survivorship and hope with other survivors.

One of the highlights of the day was when Luke sang “You Raise Me Up” to Mike, his family, and the other patients and families in the audience.

Debbie Finn

I began volunteering in January 2010 after completing all of my breast cancer therapy except for continued Herceptin treatment. I volunteered weekly, seeing inpatient cancer survivors until August 2011, when I accepted a full-time position as an elementary school nurse in Denton ISD.

What made me want to volunteer with the Virginia R. Cvetko Patient Education and Support Center was the experience I had at Baylor Sammons Cancer Center. I was treated with love and kindness by everyone I encountered at Baylor. From the front desk, to the physicians and other health professionals, to the cafeteria workers and even parking attendants, the kindness and heartfelt willingness to help was a comfort—so much so that Baylor felt like my second home.

Since the diagnosis of cancer involves the whole family, my husband and children accompanied me to many appointments. My daughter was so touched by the care and support of my social worker, Kathy Welch, that she decided to pursue that career. She graduates in December with her master’s degree in social work. I had a difficult diagnosis to treat (inflammatory breast cancer) and an uncertain prognosis, but everyone had a positive can-do attitude that gave me hope. Because of this, I wanted to be part of that experience for other survivors.

The ability to volunteer and give comfort to others undergoing treatment, or to share their journey with them, was healing for me and made my experience feel like part of a shared human journey. It is humbling to see other survivors cope with their uncertain futures and face treatment with such bravery. I look forward to continuing my volunteer activities with Cvetko Center on summer breaks and resuming them full-time when I retire from work in the next few years (hopefully because of the birth of a grandchild).
New Navigators Join Patient Navigation Program

Baylor Charles A. Sammons Cancer Center at Dallas takes pride in being a center for the personalized treatment of patients with cancer. When we say personalized, we mean a broad picture that involves targeted therapy approaches for the disease and also encompasses the type of one-on-one assistance and support found through the patient navigation program.

The patient navigation program at Baylor Sammons Cancer Center provides personalized help with every aspect of cancer care, from diagnosis to treatment and recovery. Patient navigators begin by collecting necessary patient records and other information; they then work with the patient’s physician to determine what tests or appointments are needed and coordinate the scheduling process. In addition to these logistic needs, the navigators also offer support and education for patients during the whole process and are there for them even after treatment is completed.

The ability of the patient navigation program to deliver this level of service has been helped by the recent hiring of three new nurse navigators. Min Patel, RN, has been at Baylor Dallas for more than 20 years and specializes in patients with gastrointestinal, renal, and prostate cancers. Mary Stonebridge, RN, transferred from Baylor All Saints Medical Center at Fort Worth after working there for 4 years. Her focus areas are hematological diseases and skin cancers. Karen Hieston, RN, previously worked at a medical center in Indiana and now helps patients with breast cancer.

Cynthia Robinson-Hawkins, MBA, RN, manager of Baylor’s patient navigation program, is delighted to have the three new patient navigators on board: “With more staff and specialization, our navigators can spend more time with patients. If a patient needs them for 2 hours, they can spend 2 hours. We are moving toward our ultimate goal: that every patient diagnosed with cancer at this institution will have access to a patient navigator.”

Healing with Support

In 2011, new support groups were added for colon cancer, bladder/kidney cancer, and lung cancer, and a knitting group called Passing the Hat also began. Cancer survivors may picture a support group as a circle of people bemoaning their current circumstance. There is, however, more laughter and discovery in one of these groups than most people realize. Even when a member of the support group is moving through a difficult time in his or her recovery, the theme is always hope.

While one person may receive support by way of empathy, another person with the same cancer diagnosis may be comforted by gathering helpful information regarding treatment and recovery. The Cvetko Center makes a concerted effort to
allow people to receive support through various channels. The prostate cancer support group, for example, is 80% information gathering and 20% laughter and sharing of experience. A cancer survivor stated: “The programs they provide gave us knowledge, and the support group has given us a safe place where we can talk to others.” The ovarian cancer support group is a prime example of how a support group can be a beacon of hope for other survivors. It consists of some of the strongest and most hopeful women one could ever meet.

Social Networking: Young Adult Cancer Survivors on Facebook and Sammons Says Blog
Young adult cancer survivors in North Texas have a new home on Facebook, the popular social networking site. Through Facebook, young adult survivors can now offer and receive emotional support, education, and social interaction. Those interested in joining the group can visit Facebook.com and search “Young Adult Cancer Survivors” or go to http://on.fb.me/yacsonfb.

“Young adults who have survived cancer often face a unique set of challenges,” said Phyllis Yount, LCSW, MSW, senior social worker at Baylor University Medical Center at Dallas. “They wonder, ‘Should I tell my employer? Will I be able to have children? Can I get life insurance?’ The answers to these questions and many more lie within others who have shared their experience. What better place to network with other young adults than through Facebook?”

Sammons Says presents Baylor Health Care System’s viewpoints on cancer prevention, treatment, and research. The goal of this blog is to explain and explore cancer news and information that will be a helpful resource for those battling cancer and their caregivers. Through Sammons Says, the hope is to remove some of the fear that surrounds cancer and replace it with education and inspiration. Individuals can join the conversation by visiting http://sammonssays.baylorhealth.com/.

Demonstration Kitchen
A healthy diet is crucial during cancer treatment. However, many patients face side effects that impact their nutritional intake or don’t know how to cook healthy foods that accommodate their new nutrition and taste needs.

The Virginia R. Cvetko Patient Education and Support Center has expanded services and offers a demonstration kitchen where a chef and registered dieticians teach cancer patients and their families how to cook nutritious and tasty recipes during cancer treatment.

“No most people know the basics of good nutrition; they just don’t know how to incorporate everything,” said Tricia Cox, RD, LD, oncology dietician for Baylor Charles A. Sammons Cancer Center at Dallas. “When there is a cancer diagnosis, everything else gets pushed to the side. We show them how to prepare healthy items for a variety of conditions and side effects and make good nutrition easier for them to manage.”
Classes have varying nutritional and food selection themes and also offer menus and recommendations for cancer prevention diets.

Dedication of the Horner Family Chapel

Friends of Baylor Charles A. Sammons Cancer Center at Dallas, hospital staff, and cancer survivors gathered on June 8, 2011, during National Cancer Survivors Week, to dedicate the Horner Family Chapel as a symbol of Baylor’s commitment to meeting the spiritual needs of cancer survivors and their families. Honored in the ceremony were special guests and retired oncology chaplains, Travis Maxwell and Jann Aldredge-Clanton. The podium on which Maxwell and Aldredge-Clanton’s names are inscribed is a creation of local artist and designer, Jon Wayne. Clare Graca, vice president of development and operations with Baylor Health Care System Foundation, opened the dedication with a solo, accompanied by pianist Tommy Lander. Two cancer survivors who frequent the chapel gave their personal testimony regarding how the chapel has helped them cope with a difficult cancer diagnosis. Robert Fine, MD, led the choral benediction with a beautiful Sabbath prayer for healing, *Mi Shebeirach*. Many others who influenced the design and function of the chapel were also present to speak to the inspirations that influenced the chapel and the objects within. The dedication service was instrumental in expressing gratitude for, as a visitor wrote in the chapel prayer book, “a most beautiful and sacred space.”

Baylor Cancer Center Tour App

Baylor Charles A. Sammons Cancer Center at Dallas offers a tour app, which provides building and event information. Visitors may use the app on their own devices or check-out a complimentary iPod Touch® or iPad® at the concierge desk, located on Level 1, to tour the facility.

The app includes a floor plan for each of the 10 levels of Baylor Sammons Cancer Center. App users can navigate their way through the facility to participate in the tour or locate facility amenities, including restrooms, elevators, dining, and shopping.

The tour discusses more than 20 artwork points of interests, including Lovie’s Healing Garden, a monumental glass installation by artist Jim Bowman, local photography by Dallas artists, Marvin J. Stone, MD’s microscope collection, the Horner Family Chapel and much more.

The tour also includes Leadership in Energy and Environmental Design (LEED) points of interests on the first and second levels to educate visitors on the LEED components of the building, including accessibility to public transportation, implementation of water-efficient landscaping, use of green electricity, and sourcing of regional materials. The tour app is the first mobile application featuring a LEED tour of a health care facility.

Finally, the tour app features a calendar of current activities. Facility visitors can engage in an array of activities, including lectures, support groups, cooking classes, and philanthropic events.

Duke Realty, owner and operator of the outpatient cancer center building, has generously funded the tour app.

Title: Chapel Cross

Artist: Wayne Design Group and Bullseye Glass

Date: 2011

Location: Level 1, Horner Family Chapel

To create the massive cross, Bullseye Glass fabricators hand-tinted glass frit, sheet glass fractured into small pieces, with cobalt blue powder and spread it thick to thin to create a gradient of saturation. The fritted glass was then assembled on top of sheets of white glass within high-temperature dams. This was then heated inside a large kiln to fuse the glass into one piece.
Established in 1960, the cancer registry at Baylor University Medical Center at Dallas has reviewed more than 70,000 cancer cases to date. Due to the large number of cases requiring annual follow-up, the Cancer Center Medical Committee elected to update the registry’s reference date to January 1, 2005. The registry currently follows 23,589 cases.

The registry is staffed by six full-time certified cancer registrars as well as two registrars who will be obtaining their certification in the upcoming year. In 2011, the registry welcomed Wanda Rhodes, certified cancer registrar, to the team. The staff attend monthly state webinar meetings, which include presentations from the North American Association of Certified Cancer Registrars, as well as the annual Regional Quality Seminar sponsored by Baylor Sammons Cancer Center. In 2011, all registry staff attended the Texas Tumor Registrars Association Annual Educational Conference in Rockwall, Texas, and three registrars attended the National Cancer Registrars Association Annual Conference in Orlando, Florida.

The registry’s software capabilities are being upgraded continuously to produce different statistical analyses on its data. For 2010, the registry abstracted 9,303 cases, with 2,910 of those being analytic (cases that were first diagnosed or initially treated here). There were 15 requests for data for the year. Most of these studies involved in-depth data, including survival. The follow-up rate is at 91% from reference date and 93% for the last 5 years.

The primary duties of the cancer registry include abstracting cancer data (including site, histology, stage, and treatment) on all reportable cancers and providing a lifetime of reporting on patients. In addition, the cancer registrars collect data elements for the Cancer Program Practice Profile Reports required by the American College of Surgeons Commission on Cancer, with a goal of a 90% completion rate. To ensure the quality of the registry abstract, each cancer registrar works with the medical staff in completing quality reviews of more than 10% of annual analytic abstracts. Case-finding is conducted monthly for inpatient and outpatient departments.

Cancer registry data are used to measure compliance with evidence-based clinical practice guidelines endorsed by the American College of Surgeons Commission on Cancer and the National Accreditation Program for Breast Centers through quality improvement studies. Cancer registry information enables the medical staff to address the quality of care of cancer patients at Baylor Dallas. The hospital cancer registry population is reported to the State of Texas Cancer Registry and the National Cancer Data Base.
Summary of 2010 Cancer Registry Data
By John T. Preskitt, MD, FACS

During reporting year 2010, the cancer registry at Baylor University Medical Center at Dallas abstracted 2,910 analytical cases (cases in which patients were first diagnosed or initially treated at this facility). That amounts to 11% of all cases in region 3, and 3% of all Texas cases. This number is stable compared with 2009, which had 2,943 cases. Texas Health Service Region 3 has 142 reporting facilities in 19 counties.

Baylor Dallas' top 12 sites in 2010 are listed in order, highest to lowest, in the table and are compared with US data. The distribution of cases at Baylor Dallas was similar to national statistics from the National Cancer Data Base, with breast, lung, and colorectal cancers all in the top five categories. At Baylor Dallas, prostate and bladder cancers made up a smaller percentage of cases than the national average, whereas liver and brain/other central nervous system (CNS) cancers made up a larger percentage of cases at Baylor Dallas compared with national statistics, which listed neither category in the top 12.

Compared with other Region 3 cases, Baylor Dallas saw a higher percentage of several types of cancer: liver, uterus, brain/CNS, cervix, ovary, thyroid, pancreas, breast, myeloma, and leukemia. Specifically, of the Region 3 totals, Baylor Dallas saw 34% of brain/CNS tumors, 35% of liver tumors, 19% of all gynecological tumors combined, 14% of myeloma cases, 16% of thyroid tumors, 12% of kidney tumors, 14% of breast tumors, 18% of pancreas tumors, and 13% each of rectum and esophageal tumors.

The top six sites of diagnosis were generally similar to those of the previous year: breast (586 compared with 625 in 2009), lung (241 vs 260), colon (140 vs 119), prostate (145 vs 190), brain/CNS (154 vs 168), and liver/biliary (162 vs 159). Our largest increases in numbers of cases over our 2009 data were in nasal/sinus, larynx, tongue, oropharynx, esophagus, colon, endocrine/thyroid, testis, and bladder cancers and Hodgkin’s disease. Our overall variance in numbers of cases compared to 2009 was –1%.

Table 1
2010 Baylor Dallas top 12 sites compared to national and state statistics

<table>
<thead>
<tr>
<th>Baylor Dallas Top 12</th>
<th>USA Top 12</th>
<th>Texas Top 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast</td>
<td>Lung</td>
<td>Prostate</td>
</tr>
<tr>
<td>Lung</td>
<td>Prostate</td>
<td>Breast</td>
</tr>
<tr>
<td>Colorectal</td>
<td>Breast</td>
<td>Lung</td>
</tr>
<tr>
<td>Liver</td>
<td>Colorectal</td>
<td>Colorectal</td>
</tr>
<tr>
<td>Brain and other CNS</td>
<td>Bladder</td>
<td>Melanoma</td>
</tr>
<tr>
<td>Prostate</td>
<td>Melanoma</td>
<td>Non-Hodgkin’s Lymphoma</td>
</tr>
<tr>
<td>Uterus</td>
<td>Non-Hodgkin’s Lymphoma</td>
<td>Kidney</td>
</tr>
<tr>
<td>Kidney</td>
<td>Kidney</td>
<td>Bladder</td>
</tr>
<tr>
<td>Pancreas</td>
<td>Thyroid</td>
<td>Leukemia</td>
</tr>
<tr>
<td>Thyroid</td>
<td>Uterus</td>
<td>Pancreas</td>
</tr>
<tr>
<td>Leukemia</td>
<td>Pancreas</td>
<td>Corpus Uteri</td>
</tr>
<tr>
<td>Non-Hodgkin’s Lymphoma</td>
<td>Leukemia</td>
<td>Thyroid</td>
</tr>
<tr>
<td>Primary Site</td>
<td>Total</td>
<td>Male</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>All Sites</td>
<td>2910</td>
<td>1171</td>
</tr>
<tr>
<td>Oral Cavity</td>
<td>60</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digestive System</td>
<td>631</td>
<td>361</td>
</tr>
<tr>
<td>Esophagus</td>
<td>33</td>
<td>25</td>
</tr>
<tr>
<td>Stomach</td>
<td>45</td>
<td>23</td>
</tr>
<tr>
<td>Colon</td>
<td>140</td>
<td>76</td>
</tr>
<tr>
<td>Rectum</td>
<td>95</td>
<td>57</td>
</tr>
<tr>
<td>Anus/Anal Canal</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Liver</td>
<td>162</td>
<td>106</td>
</tr>
<tr>
<td>Pancreas</td>
<td>105</td>
<td>52</td>
</tr>
<tr>
<td>Other</td>
<td>44</td>
<td>18</td>
</tr>
<tr>
<td>Respiratory System</td>
<td>271</td>
<td>148</td>
</tr>
<tr>
<td>Nasal/Sinus</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>Larynx</td>
<td>16</td>
<td>13</td>
</tr>
<tr>
<td>Lung/Bronchus</td>
<td>241</td>
<td>126</td>
</tr>
<tr>
<td>Other</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Bone</td>
<td>13</td>
<td>6</td>
</tr>
<tr>
<td>Connective/Soft Tissue</td>
<td>26</td>
<td>18</td>
</tr>
<tr>
<td>Skin</td>
<td>80</td>
<td>49</td>
</tr>
<tr>
<td>Melanoma</td>
<td>76</td>
<td>46</td>
</tr>
<tr>
<td>Other</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Breast</td>
<td>586</td>
<td>1</td>
</tr>
</tbody>
</table>

Benign includes: Gastrointestinal stromal tumors, benign meningiomas, benign brain, and other CNS benign. Other/ill-defined includes: ill-defined sites and hematopoietic diseases not included in the leukemia/lymphoma/myeloma category.
<table>
<thead>
<tr>
<th>Primary Site</th>
<th>Total</th>
<th>Male</th>
<th>Female</th>
<th>Total</th>
<th>Male</th>
<th>Female</th>
<th>In Situ</th>
<th>Localized</th>
<th>Regional</th>
<th>Distant</th>
<th>Benign</th>
<th>Unknown/Not Applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female Genital</td>
<td>275</td>
<td>0</td>
<td>275</td>
<td>9</td>
<td>1</td>
<td>132</td>
<td>56</td>
<td>68</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Cervix Uteri</td>
<td>43</td>
<td>0</td>
<td>43</td>
<td>1</td>
<td>1</td>
<td>18</td>
<td>12</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Corpus Uteri</td>
<td>140</td>
<td>0</td>
<td>140</td>
<td>0</td>
<td>1</td>
<td>91</td>
<td>31</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Ovary</td>
<td>63</td>
<td>0</td>
<td>63</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>9</td>
<td>42</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Vulva</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td>6</td>
<td>9</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>9</td>
<td>0</td>
<td>9</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Male Genital</td>
<td>157</td>
<td>157</td>
<td>0</td>
<td>0</td>
<td>109</td>
<td>35</td>
<td>7</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Prostate</td>
<td>145</td>
<td>145</td>
<td>0</td>
<td>0</td>
<td>104</td>
<td>32</td>
<td>3</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Testis</td>
<td>12</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Urinary System</td>
<td>181</td>
<td>118</td>
<td>63</td>
<td>29</td>
<td>109</td>
<td>35</td>
<td>7</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Bladder</td>
<td>63</td>
<td>47</td>
<td>16</td>
<td>27</td>
<td>18</td>
<td>9</td>
<td>7</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Kidney/Renal</td>
<td>114</td>
<td>68</td>
<td>46</td>
<td>1</td>
<td>84</td>
<td>15</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Brain and CNS</td>
<td>154</td>
<td>57</td>
<td>97</td>
<td>0</td>
<td>43</td>
<td>1</td>
<td>1</td>
<td>108</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Brain (Benign)</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Brain (Malignant)</td>
<td>44</td>
<td>27</td>
<td>17</td>
<td>0</td>
<td>41</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Other (Meninges, Spinal Cord, Nerves)</td>
<td>105</td>
<td>28</td>
<td>77</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>103</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Endocrine</td>
<td>150</td>
<td>49</td>
<td>101</td>
<td>0</td>
<td>68</td>
<td>17</td>
<td>7</td>
<td>49</td>
<td>9</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Thyroid</td>
<td>96</td>
<td>20</td>
<td>76</td>
<td>0</td>
<td>67</td>
<td>17</td>
<td>4</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>54</td>
<td>29</td>
<td>25</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>49</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Blood/Bone Marrow</td>
<td>150</td>
<td>78</td>
<td>72</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>143</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Leukemia</td>
<td>95</td>
<td>48</td>
<td>47</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>94</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Multiple Myeloma</td>
<td>47</td>
<td>25</td>
<td>22</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>41</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>8</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Lymphatic System</td>
<td>103</td>
<td>57</td>
<td>46</td>
<td>0</td>
<td>27</td>
<td>19</td>
<td>42</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Hodgkin's Disease</td>
<td>13</td>
<td>9</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Non-Hodgkin's Lymphoma</td>
<td>90</td>
<td>48</td>
<td>42</td>
<td>0</td>
<td>25</td>
<td>16</td>
<td>36</td>
<td>0</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Unknown Primary</td>
<td>49</td>
<td>18</td>
<td>31</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>Other/Ill-Defined</td>
<td>24</td>
<td>9</td>
<td>15</td>
<td>0</td>
<td>4</td>
<td>6</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>
Patient Care Evaluation Study
Cervical Cancer at Baylor Charles A. Sammons Cancer Center at Dallas: Experience from January 2007 to February 2011
By Granger R. Scruggs, MD

Background
Cervical cancer is the third most common gynecological malignancy in the United States behind endometrial (uterine) and ovarian cancer\(^1\). However, worldwide, it is the third most common cancer in women (following breast and colorectal cancer), with an estimated 529,800 new cases in 2011. Nearly 85% of cases occur in developing countries\(^2\). It is estimated that in 2011, in the US, there will be 12,710 new cases of cervical cancer and 4,290 deaths. The disparity between the incidence of cervical cancer in the US and developing countries is predominantly due to the lack of effective screening in developing countries. From the mid 1970s to the early 2000s, there has been a steady decline in mortality rates as a result of screening with the Papanicolaou (Pap) test\(^3\). In general, early stage cervical cancer may be cured in 80% to 90% of cases, while more locally advanced disease is curable in approximately 50% to 70% of cases. The most important predictor of survival is the presence of lymph node metastasis\(^3,4\).

Current screening guidelines as proposed by the American College of Obstetricians and Gynecologists recommend an initial Pap test beginning at age 21 followed by biennial testing up to age 29. At age 30, the interval between testing can be extended to 3 years in women who have had three consecutive negative Pap tests and do not have a history of a precursor to cervical malignancy, are not immunocompromised, are not HIV infected, and were not exposed to diethylstilbestrol while in utero. Additionally, women older than 30 who have negative results with both the Pap test and the human papillomavirus (HPV) DNA test can also be rescreened at 3-year intervals\(^5\).

Risk factors for developing cervical cancer include young age at first intercourse, multiple sexual partners, history of sexually transmitted diseases, and multiple pregnancies\(^6\). However, recently it has been determined that nearly 95% of all cervical cancer cases are associated with the HPV virus. While HPV infection is common among healthy women, it only rarely results in cervical cancer. The two most common strains of HPV associated with cervical cancer are HPV-16 and HPV-18. The US Food and Drug Administration approved the first preventive HPV vaccine called Gardasil for girls aged 9 to 26 in 2006. In 2009, Gardasil was approved for vaccination of boys aged 9 to 26, as they can carry and subsequently transmit the HPV virus.
The most common presenting symptom of cervical cancer is abnormal vaginal bleeding. Initially, a physical examination is performed, and if a visualized lesion is present at the cervix, a biopsy is obtained to confirm the histology. The most common type of invasive cervical tumor is a squamous cell carcinoma. If a lesion is not visibly noticeable at the time of physical examination, alternative methods would be employed to establish a diagnosis. Upon confirmation of a malignancy, additional workup is needed, including routine blood work and radiographic studies to determine the extent of disease with respect to spread to regional tissues, lymph nodes, or distant sites. Radiographic studies commonly include computed tomography (CT) and/or positron emission tomography (PET).

Interestingly, while in other types of cancers the staging system utilizes primarily a variety of technologically advanced imaging studies to accurately stage a patient, cervical cancer staging is essentially limited to the physical examination findings, plain film x-ray, and basic procedures such as endoscopic examination of the bladder and rectum. This is driven by the fact that the majority of cervical cancers occur in developing nations who do not have access to sophisticated technology such as CT or PET. Ultimately, treatment recommendations in the US are generally based on the results of all available information for the individual patient.

The most common type of invasive cervical tumor is a squamous cell carcinoma. If a lesion is not visibly noticeable at the time of physical examination, alternative methods would be employed to establish a diagnosis. Upon confirmation of a malignancy, additional workup is needed, including routine blood work and radiographic studies to determine the extent of disease with respect to spread to regional tissues, lymph nodes, or distant sites. Radiographic studies commonly include computed tomography (CT) and/or positron emission tomography (PET).

Therapeutic considerations for cervical cancer include surgery, radiation therapy, and chemotherapy. For early-stage disease (tumors less than 4 cm in size limited to the cervix), treatment options include surgery versus definitive radiation therapy. Typically, for stage IA1 (stromal invasion less than 3 mm), surgery is the preferred treatment. Radiation therapy is an option for patients with stage IA2 (stromal invasion greater than 3 mm but less than 5 mm) or stage IB1 disease (clinically visible lesion 4 cm or less). The most common type of surgery employed is a modified radical hysterectomy. During this procedure, the uterus, tissue adjacent to the cervix called the parametrium, and upper portion of the vagina are removed. Additionally, the ovaries are commonly removed as well as pelvic lymph nodes. In some cases, based on pathologic findings, patients will need adjuvant therapy, which would include radiotherapy with or without chemotherapy.

The Gynecological Oncology Group (GOG) in conjunction with the Radiation Therapy Oncology Group (RTOG), performed a study evaluating the need for adjuvant pelvic radiation therapy in selected patients following radical hysterectomy. The results, initially published in 1999 with a follow-up in 2006, demonstrated an improvement in local and distant recurrence rates from 31% without radiation to 18% with radiation in patients who had two or more of the following risk factors: presence of lymphovascular invasion, greater than one third stromal invasion, or tumors greater than 4 cm in size. Additionally there was an improvement in progression-free survival with radiation (65% to 78%). In 2000, the GOG published their results of a study evaluating adjuvant radiation versus adjuvant radiation and chemotherapy in patients who had positive lymph nodes, positive surgical margins, or involvement of disease in the parametrium following radical hysterectomy. Postoperative radiotherapy with chemotherapy improved progression-free survival (80% versus 63%) and overall survival (81% versus 71%) over radiotherapy alone.

In more advanced disease, definitive therapy with concurrent chemotherapy and radiation therapy is the mainstay of treatment. Advanced disease is typically defined as stage IB2 (clinically visible lesion larger than 4 cm) or higher. Surgery is typically not performed, as there would be a high probability of needing adjuvant radiotherapy (due to the reasons discussed above), which leads to greater long-term complications, particularly gastrointestinal complications. Multiple studies have evaluated the use of radiation therapy versus radiation therapy with concurrent chemotherapy for locally advanced disease. In general, these studies have demonstrated an improvement in
overall survival with combination therapy. RTOG 90-01 compared extended-field radiotherapy with brachytherapy to a total dose of 85 Gy to whole-pelvic radiation therapy with brachytherapy (same total dose) in combination with cisplatin and 5-fluorouracil. The combined treatment arm showed an improvement in 8-year overall survival from 41% to 67%.

GOG 120 was performed to evaluate various chemotherapeutic regimens with radiotherapy. The three arms compared weekly cisplatin versus cisplatin, 5-fluorouracil, and hydroxyurea versus hydroxyurea alone. It was found that the cisplatin-containing arms decreased 10-year local recurrence rates over hydroxyurea alone from 34% to 21%–22%. Additionally, there was an improvement in progression-free survival (26% to 43%–46%) and overall survival (34% to 53%) with the cisplatin arms.

Cervical Cancer at Baylor Sammons Cancer Center

Baylor Charles A. Sammons Cancer Center at Dallas is a large tertiary referral center. We identified stage I and stage II cervical cancer patients treated at Baylor Dallas between January 2007 and February 2011 through our tumor registry. We gathered the demographic and clinical characteristics as well as treatments received and subsequently evaluated survival of this population and compared it to the national population.

In 1991, cancer care included the beginnings of care coordination through primary care nurses.

In 2011, the patient navigation program includes 5 full-time, specialized nurse navigators who assist patients through all aspects of their diagnosis, treatment, and post-treatment care.

During that time period, 102 cervical cancer patients were identified in the tumor registry. At the time of diagnosis, 81 (79%) had stage I disease, and 21 (21%) had stage II disease. Among the stage I patients, 24 were substaged as stage IA (30%) and 57 as stage IB (70%). Of the 57 stage IB patients, 41 (72%) were classified as stage IB1 and 16 (28%) as stage IB2.

The median age of our entire cohort was 43 years (range, 24–86 years). The majority of the patients were Caucasian (72%), while 15% were African American, 12% were Hispanic, and <1% represented other ethnicities.

Treatment. Figure 1 summarizes the treatment of our cohort. Among patients with stage IA disease, surgery alone was the definitive management for 92% of patients. One patient was managed with definitive radiation therapy, as she was considered high risk for surgical intervention given a history of prior liver transplant. The other patient had undergone exploratory laparotomy and was found to have metastatic nodal involvement and thus was treated with definitive radiotherapy and chemotherapy.

A variety of treatments were employed for patients with stage IB1, which reflect the various options in the standard of care for this subset of patients. Of the 41 patients, 29% underwent definitive surgical resection alone, 27% under-
went definitive radiotherapy with or without chemotherapy, and 39% underwent a combination of surgical resection and adjuvant radiotherapy with or without chemotherapy. Treatment details for two patients were not available.

Of the patients with stage IB2 disease, 63% underwent definitive radiotherapy with chemotherapy. A combination of surgery and radiotherapy with chemotherapy was undertaken for 31% of patients. One patient was managed with definitive surgical resection.

Among stage 2 patients, 67% were treated with definitive radiotherapy and chemotherapy, while 29% underwent surgery and radiotherapy with or without chemotherapy. One patient with clinically stage II disease was found to have carcinomatosis on radiographic imaging studies and thus was treated with systemic chemotherapy alone.

Survival. Our cohort of patients had a similar survival by stage compared with averages of national, regional, and teaching hospital cancer programs (Figure 2). At Baylor University Medical Center at Dallas, overall 2-year survival was 95% for stage I disease and 86% for stage II disease. The respective averages for the national, regional, and teaching hospital cancer programs ranged from 94.3% to 94.7% for stage I disease and 80.2% to 83.1% for stage II disease.\(^{12}\)
Cervical cancer often requires a multidisciplinary approach for definitive treatment, including surgery by a gynecologic oncologist and a radiation oncologist. Baylor University Medical Center at Dallas and Baylor Sammons Cancer Center strive to improve patient access to this collaborative approach and promote research opportunities with the hope of continuing improvement in survival.

Table 1

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Stage IA</th>
<th>Stage IB1</th>
<th>Stage IB2</th>
<th>Stage II</th>
</tr>
</thead>
<tbody>
<tr>
<td>No/unknown treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surgery alone</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>0%</td>
</tr>
<tr>
<td>Chemotherapy alone</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiation ± chemotherapy</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Surgery and radiation ± chemotherapy</td>
<td>100%</td>
<td>89%</td>
<td>50%</td>
<td>86%</td>
</tr>
<tr>
<td>Overall survival</td>
<td>100%</td>
<td>95%</td>
<td>88%</td>
<td>86%</td>
</tr>
</tbody>
</table>

As shown in Table 1 and Figure 3, all stage IA patients were alive at 2 years. In addition, all patients with stage IB disease treated with definitive surgical resection or radiation with or without chemotherapy were alive at 2 years. The stage II patients managed with surgery and adjuvant radiotherapy with or without chemotherapy had an 86% 2-year survival. The decrease in survival represented by patients receiving chemotherapy likely reflects more advanced disease found at the time of surgery or on pretherapy radiographic studies, warranting the need for chemotherapy as part of the treatment plan.

Conclusion

Cervical cancer often requires a multidisciplinary approach for definitive treatment, including a gynecologic oncologist and a radiation oncologist. This is generally attainable in the US and other developed nations; however, it is difficult in developing nations. Early detection and a collaborative approach to treatment have led to a reduction in the incidence of cervical cancer and improvement in survival in the US. Baylor Sammons Cancer Center strives to improve patient access to this collaborative approach and promote research opportunities with the hope of seeing continued improvement in survival.

References

Patient Care Evaluation Study
Incidence of Melanoma at Baylor Charles A. Sammons Cancer Center at Dallas: Experience from 2009–2011
By Jordan Sparkman, Breck Thrash, MD, and Dan McCoy, MD

Background
Melanoma is a cancer of the pigment cells, or melanocytes, of the skin. This disease strikes people of all ages; our youngest patient was 13 years old. One American falls prey to melanoma every hour, accounting for 9,000 deaths each year. More alarming, the incidence of melanoma has increased steadily since 1992. Although there is a movement towards earlier diagnosis, the annual death rate from melanoma has not decreased. A three-prong attack of improved public education, increased primary prevention, and more astute clinical detection is needed to curb this lethal trend.

Almost all adults have pigmented lesions on their skin. Most of these are benign nevi, but rarely a malignant transformation—or de novo melanoma—can occur. The best way to treat melanoma is to diagnose it at its early stage, when surgical removal provides the best prognosis for cure. Baylor University Medical Center at Dallas’ pigmented specialty clinic’s main goal is early diagnosis of melanoma. We use a combination of conventional and nonconventional methods to aid in the detection of this disease.

In addition to detailed clinical exams, other methods can be used to detect melanoma. The techniques of mole mapping, dermoscopy, and confocal microscopy are sometimes used, especially for high-risk patients. Mole mapping is a technique where a baseline reference is made by documenting the surface of a patient’s skin via digital photography. With this baseline information stored, any changes that occur to moles or the occurrence of new moles can be seen more readily over time. Dermoscopy, on the other hand, is a means by which lesions on the skin can be magnified. Using polarized light, this technique reveals subsurface features that can be examined to aid in the diagnosis of a suspected melanoma. In addition to dermoscopy, confocal laser microscopy is a research tool used for high-resolution imaging of the skin at the cellular level. Cells in both the outer layer of skin, the epidermis, as well as the outermost layer of the inner skin, the dermis, can be visualized. The use of confocal microscopy enables a noninvasive cellular snapshot of the suspicious mole; the organization, shape, and location of cells in the lesion help determine if the cells are benign or malignant. Along with these techniques, newer methods of detection are being investigated as weapons for identification of malignant skin lesions. The following report is a snapshot of our experience with melanoma over the past 2 years.

Melanoma at Baylor Sammons Cancer Center
During the 2009–2011 timeframe, we diagnosed 181 cases of melanoma in our patients. We classified the tumors as either noninvasive or invasive. Two classifications were used for noninvasive melanoma: melanoma in situ (MIS) and lentigo maligna (LM). MIS is the earliest stage of a skin cancer, in which the cancer cells are localized to the epidermis. LM is a form of melanoma in situ but is a relatively slow-growing malignancy, normally appearing on regions of the skin with chronic, high sun exposure in older patients. Due to its slow rate of growth, it may take decades to develop. The two invasive forms of melanoma are lentigo maligna melanoma (LMM) and malignant melanoma (MM). As the name implies, LMM is thought to arise from LM. Thus, LMM is a slow-growing lesion that normally strikes people later in life, after prolonged sun exposure.

Figure 1
Distribution of skin cancers found in clinic patients
A. Total distribution of 181 patients diagnosed with lentigo maligna (LM), lentigo maligna melanoma (LMM), melanoma in situ (MIS), or malignant melanoma (MM).
B. Of 82 patients with invasive melanoma, percentage having LMM compared with MM.
exposure. In contrast to LMM, malignant melanoma can arise in healthy skin, in areas with or without evidence of prior lesions, and in younger patients.

The main predictor of a patient’s prognosis and treatment of melanoma is determined, in large part, upon the depth of tumor invasion. Two thirds of our cases, or ~64% of the lesions seen in our clinic, were not yet invasive (Figure 1A; LM + MIS). This compares well with the proportion of lesions discovered nationally at the noninvasive stage, which is estimated to be only 45%\(^1\). The much higher proportion of noninvasive lesions in our clinics is likely an indication of success at early detection of lesions, which places an emphasis on surveillance for melanoma. Of our patients with invasive melanoma, 35% were classified as LMM, which is much higher than the reported incidence of 5% to15% seen nationally\(^1\) (Figure 1B). This likely reflects the patient population treated at our offices, which includes a significant number of people from the rural areas of Texas, a population with the chronic sun exposure associated with LMM.

Chronic sun damage to the skin, especially on the head, neck, and arms, is a known risk factor for LMM; however, the risks for malignant melanoma are slightly different. In fact, many malignant melanomas arise on unexposed areas of the skin. One of the greatest risk factors for development of malignant melanoma is acute, blistering sunburns, especially in areas of the skin that are not often exposed to the sun. In our patient group, the average age of our melanoma patients was 52 years, which is 5 years younger than the national average of 57 years. Given the high incidence of LMM in our sample, which is typically seen in an elderly population, our average age of diagnosis is even more remarkable. Once again, this might be explained by our techniques for detection, which allow for earlier discovery of melanomas at our clinics. Our youngest melanoma patient was 13 and the oldest was 91, with the 60 to 69 age group having the greatest number of cases (Figure 2). However, as mentioned earlier, melanoma does not discriminate in regards to age and was well represented in every age bracket.

Age is an important determining factor in the type of melanoma seen at diagnosis. Melanoma in situ and melanoma of the superficial spreading and nodular variants were the exclusive melanomas we saw in patients under 40 years of age. After the age of 40, LM and LMM became increasingly more common in our population, and by the seventh decade, LM and LMM were the majority of melanoma lesions that we saw (Figure 3). This trend was to be expected, given the tie to high cumulative chronic sun exposure seen with LM and LMM.

Multiple dysplastic nevi are known predictors of melanoma risk. We were able to find other
associations in our data for risk of melanoma. Nearly 66% of our melanoma patients had a history of actinic keratosis, and more than one in three had a history of basal cell carcinoma. (Figure 4). Actinic keratoses are dysplastic lesions occurring in the skin cells of the epidermis, the keratinocytes. Thus, they are confined to the epidermis and are associated with cumulative ultraviolet damage. The association between actinic keratoses and melanoma, therefore, is not surprising. We found no association between melanoma and squamous cell carcinoma of the skin. More interesting is the 37% concordance we observed with basal cell carcinoma in our melanoma patient population. Basal cell carcinoma is the most common skin cancer in the US, occurring in approximately 15% of the general population. In particular, blistering sunburns during childhood place one at increased risk for basal cell carcinoma. Since this also seems to be the case for melanoma, parental education on sun avoidance for children serves as an avenue for significant impact on melanoma in generations to come.

Nearly 70% of our melanoma patients were treated by excision. One quarter of our patients had surgery, with 20% of those patients undergoing sentinel lymph node biopsy (Figure 5). A small minority of patients, about 5%, had lesions primarily on the head and neck that required Mohs surgery. Mohs surgery is a highly specialized form of surgery that precisely removes the cancer in stages, allowing for optimal tissue preservation in areas where wide margins can prove disfiguring. The surgeon removes the tumor and a thin layer of surrounding tissue. The tissue is processed and examined to make sure all cancer was removed. If there is evidence of cancer at the borders of the tissue, more tissue is removed. These steps are repeated until no cancer is detected at the margins of the removed tissue. Only 4% of our population underwent sentinel lymph node biopsy, demonstrating that early melanoma detection had an impact on the extent of treatment required by our patients.

Conclusion
In summary, the data we have collected over a 2-year period on melanoma indicate that as a dedicated pigmented specialty clinic, we have been successful in finding melanomas at an earlier stage than seen on average across the country. Whether or not this has led to any change in overall mortality in our patients is still to be determined. However, given that mortality associated with melanoma is most closely tied to depth of invasion, one can make the assumption that we are having a positive impact on decreasing future mortality rates in our patients. Regardless, the dedication to early detection of melanoma at Baylor University Medical Center at Dallas will continue.

Reference

Figure 4
Types of skin lesions patients had before presenting to our clinic with melanoma

<table>
<thead>
<tr>
<th>Type</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC, SC, AK</td>
<td>22</td>
</tr>
<tr>
<td>SC & AK</td>
<td>10</td>
</tr>
<tr>
<td>BC & AK</td>
<td>39</td>
</tr>
<tr>
<td>AK Only</td>
<td>1</td>
</tr>
<tr>
<td>SC Only</td>
<td>1</td>
</tr>
<tr>
<td>BC Only</td>
<td>6</td>
</tr>
<tr>
<td>None</td>
<td>55</td>
</tr>
</tbody>
</table>

BC indicates basal cell; SC, squamous cell; AK, actinic keratosis.

Figure 5
Patient treatment

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Referred for Mohs</td>
<td>10</td>
</tr>
<tr>
<td>Referred to surgeon SNB</td>
<td>7</td>
</tr>
<tr>
<td>Referred to surgeon</td>
<td>34</td>
</tr>
<tr>
<td>Excised in clinic</td>
<td>130</td>
</tr>
</tbody>
</table>

The number of patients treated in the clinic, referred for surgery, referred for surgery including sentinel lymph node biopsy (SNB), or referred for Mohs surgery.
Research

Precision Medicine Approaches to Treatment of Advanced Melanoma

Although melanoma is not the most common type of skin cancer, it is the most deadly, accounting for 75% of skin cancer deaths. The outcome of melanoma depends on the stage at presentation. For patients who present with localized disease and primary tumors 1 mm or less in thickness, the 5-year survival rate is more than 90%, but this drops to around 65% if regional lymph nodes are involved, and less than 10% in patients with distant metastases. A variety of agents are used for the treatment of metastatic melanoma, including dacarbazine, high-dose interleukin-2, temozolomide, and paclitaxel, as well as various chemotherapy/biochemotherapy combination regimens. There has been no consensus around any of these treatment options, reflecting their low level of activity in the metastatic setting. The targeted T cell antibody ipilimumab, which helps to sustain an active immune response from cytotoxic T cells, is the first agent ever shown to improve survival in patients with advanced melanoma. However, it carries the potential for significant immune-related complications.

Two precision medicine approaches for the treatment of advanced melanoma are being actively investigated at Baylor University Medical Center at Dallas: the development of dendritic cell vaccines against melanoma and the use of targeted therapy against melanoma-specific gene mutations.

Researchers at Baylor Institute for Immunology Research have been working for more than 10 years on dendritic cell vaccines that target melanoma. Most studies have focused on the ex vivo generation and antigen loading of dendritic cells. A retrospective analysis of patients with advanced/metastatic melanoma treated with dendritic cell vaccines between 1999 and 2003 showed a 20% long-term survival, a promising result that needs to be confirmed in prospective randomized trials. The dendritic cell vaccines appear to be extremely safe, with mild, flu-like symptoms as the most common side effect.

According to Charles Lance Cowey, MD, a medical oncologist on the medical staff at Baylor University Medical Center in Dallas, numerous ongoing clinical trials at Baylor Research Institute are investigating the efficacy of drugs that target specific genetic mutations in melanoma. Dr. Cowey and colleagues are currently participating in:

- The TEAM trial (Tasigna Efficacy in Advanced Melanoma), an international phase III trial comparing nilotinib with dacarbazine for the
treatment of metastatic and/or inoperable melanoma harboring a c-Kit mutation (T01008).

- Two clinical trials (T01010 and T01014) investigating various aspects of the B-Raf inhibitor, PLX4032. Activating mutations of the BRAF gene have been observed in a variety of cancers, including 55% to 88% of malignant melanomas. In general, oncogenic mutations of BRAF correlate with a poor outcome.

- Two phase II clinical trials investigating the efficacy of E7080: (1) in combination with dacarbazine versus dacarbazine alone as first-line therapy in patients with stage IV melanoma (USON 09191); and (2) as second-line treatment for patients with advanced melanoma who have been unsuccessfully treated with chemotherapy or a B-Raf inhibitor (USON 09194).

Dr. Cowey is hopeful about the prospect of improving outcomes in patients with advanced melanoma: “Until recently, melanoma has been a devastating disease with limited treatment options. With the approval of ipilimumab and the upcoming B-Raf inhibitor, PLX 4032, targeted treatments are beginning to change the landscape of therapeutics for this disease. The ongoing identification of important genetic features of various types of melanoma, such as B-Raf and c-Kit mutations, is opening doors for an influx of individualized treatments that have maximal efficacy and minimal toxicity.”

Golfers Against Cancer Fundraising Event for Melanoma Research

The Dallas chapter of Golfers Against Cancer (GAC) held its first annual dinner/auction and golf event at Prestonwood Country Club in October 2011. The event consisted of an evening of dinner, entertainment, the chance to bid on auction items, and 100 holes in a 1-day golf marathon. All funds raised from this event went towards melanoma research efforts and clinical trials under way at Baylor Charles A. Sammons Cancer Center at Dallas.

Since its founding in 1997, GAC has had one goal: to fund cancer research. To date, GAC has contributed more than $22 million towards the funding of cancer research. GAC continually evaluates research organizations to assess where their goals meet the goals of GAC. Once these organizations are identified and funds are committed, selected members of the GAC board of directors monitor the progress of their cancer research efforts.

Membership in the Multiple Myeloma Research Consortium

Baylor Charles A. Sammons Cancer Center at Dallas is now a member of the Multiple Myeloma Research Consortium (MMRC), an early stage drug development consortium composed of 16 world-renowned research institutions from across the country, including City of Hope, Dana-Farber Cancer Institute, H. Lee Moffitt Cancer Center and Research Institute, Mayo Clinic, and Mount Sinai School of Medicine. The mission of the MMRC is to accelerate the development of innovative treatments for patients with multiple myeloma by promoting and facilitating collaborative research between industry and academia.

The MMRC is a powerful research model to fast-track promising myeloma therapies from bench to bedside. A key component of the MMRC model is the MMRC Tissue Bank, a unique resource that integrates myeloma tissue samples with corresponding genomic and clinical data. Through the implementation of strong quality control and auditing procedures, the MMRC Tissue Bank ensures that all tissue samples are of the highest quality. The MMRC Tissue Bank is the basis for basic science research exploring the biology of multiple myeloma and for preclinical validation studies of innovative therapies.

Since its inception in 2004, the MMRC has partnered with pharmaceutical and academic sponsors to facilitate 19 phase I and phase II clinical trials involving novel treatment strategies aimed at high-priority targets. MMRC clinical trials include correlation studies to help in determining optimal treatment strategies for...
Researchers and clinicians at Baylor Sammons Cancer Center are excited about this new opportunity to expedite development of effective new therapies for multiple myeloma. Joseph W. Fay, MD, medical oncologist on the medical staff at Baylor University Medical Center at Dallas and medical director of the Division of Immunologic Therapy for Cancer at Baylor Research Institute, commented: “Our membership in the MMRC enables us to significantly extend our clinical research to studies of the basic biology of myeloma. This unique capability will enable participation in and initiation of new treatment approaches for this disease. In addition, the MMRC will facilitate studies in the tumor immunology and immunotherapy of myeloma within Baylor Institute for Immunology Research and Baylor Sammons Cancer Center.”

Joyce O’Shaughnessy, MD

Research to Target Resistant Forms of Triple-negative Breast Cancer

Triple-negative breast cancer (TNBC), which is negative for estrogen receptor, progesterone receptor, and human epidermal growth factor (HER2), normally occurs in younger, premenopausal women and tends to present with higher grades at diagnosis. While it accounts for only 10% to 20% of all breast cancers, it carries with it an aggressive tendency and a poorer prognosis. “Most women with this type of breast cancer are cured after chemotherapy,” said Joyce O’Shaughnessy, MD, a medical oncologist on the medical staff at Baylor University Medical Center at Dallas and the Celebrating Women Endowed Chair. “But for about one third, the cancer comes back, and we want to know why. HER2-positive cancers would have the additional benefit of Herceptin® and estrogen-positive cancers respond to treatments such as tamoxifen,” said Dr. O’Shaughnessy. “With those types of cancer, we have something extra to use for attacking the cancer. With TNBCs, we are still looking for that specific target within the cancer to attack.”

A number of targeted strategies have been or are being employed in various clinical studies to treat TNBC. Epidermal growth factor receptor is overexpressed in approximately 60% of TNBCs, so antibodies or small molecules that inhibit the receptor, such as cetuximab, have been used in combination with chemotherapy to better target the cancer. To date, this treatment has resulted in only a modest improvement in progression-free survival. The BRCA1 gene is mutated in 11% to 29% of TNBCs. The product of the BRCA1 gene is a tumor suppressor involved in numerous normal functions in the cell, including DNA damage repair. Poly (adenosine diphosphate-ribose) polymerase (PARP) is another molecule involved in repair of DNA damage. The combination of chemotherapy causing DNA damage and the use of PARP inhibitors to block DNA damage repair was consequently heralded as an exciting new treatment for TNBC. Thus far, it appears that the use of PARP inhibitors in combination with chemotherapy produces the most clinical benefit in cases of BRCA1-mutated TNBC. There is still a search to better identify the causes of TNBC so more effective treatments can be developed.

Dr. O’Shaughnessy is principal investigator on a study where 14 women with metastatic or locally recurrent TNBC have been identified. Tissue has been collected during surgical biopsy or resection and is undergoing molecular evaluation with next-generation sequencing, not only to identify potential mutational targets, but to prioritize them. Based on the genetic profile of each patient’s tumor, molecularly based therapeutic agents will be recommended by the study.

Joyce O’Shaughnessy, MD
investigators and treating oncologist. The primary endpoint of the study is time to progression for patients following the recommended therapy compared with time to progression on the immediate prior standard therapy. Secondary objectives are best response to the molecularly targeted therapy, overall survival, and genetic mutation evaluation.

This trial represents the first time that researchers are using genome mapping with the specific goal of identifying targeted therapies for specific patients. “We’re trying to match a therapy to a patient,” said Dr. O’Shaughnessy. “This is exciting, promising work.”

Clinical Oncology Research Coordination Office: Keeping Up with Trials, Steady Growth

Opportunities abound across Baylor Health Care System for cancer patients to participate in clinical trials. The Office of Clinical Oncology Research Coordination, which was established in 2010 has more than 100 active protocols, of which 44 are open for enrollment at three Baylor locations: Baylor University Medical Center at Dallas, Baylor All Saints Medical Center at Fort Worth, and Baylor Medical Center at Irving. Trials are available for many oncologic diagnoses, including hematologic malignancies (leukemia, lymphoma, and multiple myeloma), bone marrow transplant, breast cancer, melanoma, lung cancer, brain cancer, head and neck cancer, and gynecologic malignancies including ovarian, fallopian tube, and endometrial cancer. Clinical Oncology Research Coordination also supports Baylor’s memberships in many cooperative groups and consortia including the Southwest Oncology Group, Gynecologic Oncology Group, Multiple Myeloma Research Consortium, Brain Tumor Trials Collaborative, and Cancer Immunotherapy Trials Network.

The office has experienced substantial growth over the past year. In fiscal year 2011, the number of open trials increased by 90%. As a result, accrual to oncologic clinical trials increased by 100%. As evidenced by the staff picture, it takes a lot of great people to make all of this happen.

Centralizing operations has been a major undertaking over the past fiscal year. Processes have been changed and streamlined, which has led to increased operational efficiency. For example, a centralized regulatory department uses an electronic filing system. Removing most of the regulatory tasks from the research nurses and coordinators has given them more time to assist the investigators in finding qualified subjects to participate in our trials. A departmental goal for fiscal year 2012 is to increase accruals by 10% over fiscal year 2011. With the outstanding team and centralized model in place, the office is currently on target to meet this goal with hopes of exceeding it.

Baylor Sammons Cancer Center is looking forward to seeing what the department will accomplish over the next year, what new opportunities will be available for cancer patients as the journey continues to find better treatments.

Office of Scientific Publications

The newly established Office of Scientific Publications in Baylor Charles A. Sammons Cancer Center at Dallas offers services for the development of oncology-related research articles and grant applications. Services—which are available...
In 1991, the clinical research program offered more than 45 experimental protocols for selected patients.

In 2011, the clinical research program offers more than 100 clinical trials at any one time, with more than 800 patients participating annually.

Free of charge to all physicians on medical staff at a Baylor Health Care System facility, as well as medical oncology fellows and nursing staff—include editing cancer-related scientific manuscripts and investigator-initiated research grants; editing and assisting with the production of scientific posters and powerpoint presentations; developing figures, tables, and graphic aids to enhance presentation of complex scientific concepts and data; and providing help in identifying funding opportunities. The office is under the direction of Margaret Hinshelwood, PhD.

Presentations at American Society of Clinical Oncology

At the 2011 meeting of the American Society of Clinical Oncology, 29 abstracts featured authors from Baylor Charles A. Sammons Cancer Center, including seven abstracts for which Baylor Sammons Cancer Center researchers were first authors: Thomas Hutson, DO, PharmD, Joyce O’Shaughnessy, MD, Joanne Blum, MD, PhD, Carlos Becerra, MD, Cynthia Osborne, MD, Charles Lance Cowey, MD, and John Pippen, MD. Sixteen of the abstracts related to genitourinary cancers; 10 to breast cancer; two to gastrointestinal cancers; and one to melanoma.

Baylor Sammons Cancer Center Joins Cancer Immunotherapy Trials Network

Karolina Palucka, MD, PhD, an investigator at Baylor Institute for Immunology Research and the Michael A. Ramsay Chair for Cancer Immunology Research, has announced that Baylor Charles A. Sammons Cancer Center at Dallas and Baylor Research Institute are members of the Cancer Immunotherapy Trials Network (CITN). A co-investigator is Joseph W. Fay, MD, director of immunotherapy for cancer. CITN is a newly formed research consortium funded by the National Cancer Institute and the Fred Hutchinson Cancer Research Center.

The network pulls together the collective expertise of top academic immunologists from 27 research institutions across the country including Fred Hutchinson Cancer Research Center, Dana Farber Cancer Institute, Duke University Medical Center, H. Lee Moffitt Cancer Center, and Memorial Sloan-Kettering Cancer Center to conduct multicenter research on immunotherapeutic agents that are capable of unleashing patients’ own immunity to fight their cancer. The mission of the CITN is to select, design, and conduct early phase trials using agents with proven biologic function and to generate the high-quality immunogenicity and biomarker data that will be essential for the further development of these agents for treating patients with cancer.

| Patient accruals by tumor type (all trial types) |
|---|---|---|---|---|---|---|---|---|---|---|
| Breast | Chest | GI | GU | Gyn | Hematology | Neuro | Other | Skin |
| 400 | 51 | 57 | 77 | 3 | 108 | 8 | 65 | 60 |
Medical Oncology Fellowship Program

Forty-seven physicians have completed their medical oncology fellowship since Baylor Charles A. Sammons Cancer Center at Dallas opened in 1976. All have successfully passed the medical oncology exam and become board certified. Approximately two thirds practice in the North Central Texas community. Steve Paulson, MD, a physician on the medical staff at Baylor University Medical Center at Dallas, and a former Baylor oncology fellow, pointed out that: “The only way we can be sure to have adequate cancer care in our community and in our state is to continue to invest in the education of our medical oncologists.” Because of the aging population, the need for more oncologists is projected to be greater in the coming years, and some experts believe there will be a shortage of these specialists in the near future.

“Baylor University Medical Center at Dallas is a teaching institution, and this is one reason why the level of clinical excellence here is so high,” said Marvin J. Stone, MD, director of the medical oncology fellowship program. More than 6,000 new cancer patients are seen at Baylor Sammons Cancer Center annually. Dr. Stone added, “Fellows see patients with virtually all types of solid tumor and hematologic malignancies. Many of these patients participate in clinical research trials. The fellows thus become familiar with the design and interpretation of advanced treatments as well as conventional approaches. Our medical staff actively participates in the education of medical students and residents as well as fellows. When the fellows complete their training, they will be doing what we do, practicing medical oncology and hematology.”

Currently, Baylor has six physicians in the medical oncology fellowship program. All completed internal medicine training previously. The fellowship emphasizes mentorship. Many attending physicians are role models. Oncology rotations are designed so that each fellow spends 1 or 2 months with one attending physician. The large amount of one-on-one time between the fellow and the attending oncology physician maximizes the educational content for the trainees. “This side-by-side interaction between fellow and attending physician leads to constant teaching and learning for both parties,” commented Robert Mennel, MD, medical director of clinical oncology.
Fellows also spend time in blood and marrow transplantation, pathology, gynecologic oncology, and radiation oncology. More than 20 multidisciplinary site tumor conferences are held by Baylor Sammons Cancer Center each month. The discussions about diagnosis and treatment at these conferences provide fellows with valuable information and perspective about patient care. The trainees also attend a number of other oncology and hematology conferences with basic science, clinical research, and journal club formats. They engage in research projects, many of which develop into presentations at national meetings and published articles in peer-reviewed medical journals.

In addition to the medical oncology fellowship program, Baylor Sammons Cancer Center has also initiated a fellowship in blood and marrow transplantation. The first transplant fellow began her 1-year tenure in July 2011 after completing hematology-oncology training. She will spend 6 months in clinical transplant services and 6 months in research.

“The educational benefit of having fellows is not solely to the trainees. By having fellows, the oncologists on the medical staff are challenged to keep pace with the most recent advances, thus elevating the general level of care,” said Alan Miller, MD, PhD, medical director of Baylor Sammons Cancer Center and chief of oncology for Baylor Health Care System.

Oncology has emerged as one of the most exciting areas in medicine. Dedication to lifelong learning is crucial because the galaxy of knowledge continues to expand and new information constantly changes practice. Equipped with broad-based training and familiarity with the ongoing advances in the field, Baylor’s medical oncology fellowship graduates will be prepared to deliver quality and compassionate care to generations of patients.

Lung Cancer Symposium
The first North Texas Multidisciplinary Lung Cancer Symposium was held on October 1, 2011, at Baylor Sammons Cancer Center. This day-long event centered on recent advances in lung cancer, and almost 100 professionals attended. The roster of participants included residents, fellows, nurses, and physicians from across North Texas, Arkansas, Louisiana, and Tennessee. Participants were able to gain continuing medical education credits for attending.

Faculty from across the country presented the latest data on methods of screening, the new TNM staging system for lung cancer, ways that genetic evaluation can influence treatment choices, new techniques in minimally invasive surgery, combined modality therapies, integration of biomarkers for personalized therapy, new paradigms in the treatment of advanced lung cancer, and the role of maintenance chemotherapy. In addition to the lectures, open discussions led by a moderator were initiated after each group of talks, allowing participants to ask questions of either a particular speaker or the panel of speakers. Cases were presented, and an audience response system was utilized to enhance the interaction. The symposium provided more time for discussion, at breaks and at lunch, and enabled participants to have one-on-one interaction with the symposium faculty.

The symposium was well received and accomplished the goal of updating medical practitioners on the latest information in the field of lung cancer treatment and research.

Oncology Lectureships
The third annual Marvin J. Stone Lectureship took place on March 29, 2011. It was the first lectureship held in the 10th floor Tom Hunt Auditorium of the new Baylor Charles A. Sammons Cancer Center at Dallas. The recipient of the lectureship was James Armitage, MD,
Steven R. Paulson, MD, a physician on the medical staff at Baylor University Medical Center at Dallas, reflects on his time as an oncology fellow.

The oncology fellowship program at Baylor University Medical Center at Dallas has evolved considerably since the early 1980s. At that time, the program was a shared program between Parkland Medical Center, Dallas VA Hospital, and Baylor. It was a 2-year program with two fellowship slots per year. The fellows were expected to rotate between the three institutions and would do so every 4-months. There was some option as to which facility you spent time at, and clearly for most people Baylor was the preferred location to see patients. In addition, the actual faculty at that time was entirely contained within the medical oncology group physicians.

The schedule was largely created at that time by working with the engaged physicians. There was certainly a great deal of variation in the style of the faculty, but this created different styles to learn from, and certainly the clinical exposure was substantial.

Much of the interactive teaching was done over the microscope with Dr. Stone and the typical Tuesday afternoon slide rounds. In addition, students and residents who were rotating in oncology that month also participated in these conferences. The hours were long but very productive. To say that the program has changed considerably is an understatement, but the fellowship program back in the early 1980s was very deep in clinical information and clinical exposure, with a lot of opportunity for decision making.
2005

The Virginia R. Cvetko Self-help Group holds its 100th session

Baylor Sammons Breast Imaging Center at North Dallas opens

2006

Baylor Charles A. Sammons Cancer Center celebrates its 30th anniversary

The Hereditary Cancer Risk Program sees its 1,000th patient

Genitourinary Oncology Section is established

2008

Blood and Marrow Transplantation celebrates its 25th anniversary

The Patient Navigation Program is established

The Oncology Outpatient Clinic opens

Alan Miller, MD, PhD, becomes medical director of Baylor Sammons Cancer Center and Baylor Health Care System chief of oncology

Patient navigators offer support to patients

Publications

14. Cheng YS, Rees T, Jordan L, Oxford L, O’Brien J, Chen HS, Wong D. Salvatory endothelin-1 potential...

In 1976, when Charles A. Sammons gave $1 million to help fund a new cancer center, a new era of cancer care began at Baylor Health Care System. Since then, community members, foundations, and corporations have given more than $95 million to support oncology initiatives at Baylor. Continuing the legacy of philanthropy begun in 1976, the Sammons Foundation, the men and women of Sammons Enterprises Inc., and the family and estate of Charles A. Sammons gave $20 million to help fund the new Baylor Charles A. Sammons Cancer Center at Dallas, which opened in March 2011. Collectively, these gifts have fueled Baylor’s advances in cancer care, making Baylor a trusted resource where more cancer patients are treated than at any other hospital in North Texas.

These advances would not be possible without the philanthropic leadership of key supporters in our community. Their generosity has been integral to Baylor’s success in supporting the four pillars that enable Baylor to provide safe, quality, compassionate care: capital and technology, research, medical education, and patient-centered programs.

Capital and Technology: $22 Million

Giving Baylor patients access to facilities and technology that advance therapies and nurture healing would not be possible without philanthropic support. Thanks to the combined efforts of physicians, corporate partners, and individual donors, a new technologically advanced conference center was built on the 10th floor of the new Baylor Sammons Cancer Center. The conference center’s greatest individual supporters were family members and friends of Tom Hunt, who contributed more than $2 million to the project, which is now called the Tom Hunt Auditorium.
Corporate gifts totaling $1.25 million supported the conference center, including a $1 million gift from AT&T, and 20 physicians on the medical staff at Baylor University Medical Center at Dallas pledged more than $500,000 to the center. The conference center elevates the level of service and care provided to Baylor patients by providing a space for physician conferences, public health classes, cancer education classes, and other programs.

Research: $42 Million
Research keeps Baylor at the forefront of cancer medicine. Baylor’s large patient volumes create an especially fertile environment for translational, bench-to-bedside discoveries. In the last 2 years alone, more than 1,600 cancer patients have participated in Baylor’s clinical trials, often at no charge. Baylor’s clinical research would not be possible without gifts like the $5 million grant from the Pauline Allen Gill Foundation. The grant created the Pauline Allen Gill Endowed Distinguished Chair in Hematological Cancer Research, establishing the support system needed to expand the number of promising clinical trials available to patients with hematological cancers.

Medical Education: $18 Million.
Our medical leadership is only as strong as our ability to train the best minds in the field. As a result of the generosity of our donors, Baylor is a thriving teaching hospital with medical education opportunities available for medical students, residents, fellows, and nurses. Through these generous gifts, medical oncology fellows have been able to complete their studies at Baylor. Each of these physicians will affect the lives of 50,000 to 100,000 people over the course of their career, making a significant impact on health care in our community.

Patient-Centered Programs: $13 Million
Baylor’s mission to provide safe, quality, compassionate care incorporates the needs of the whole patient. That is why Baylor invests in cancer resources and support programs, such as the Virginia R. Cvetko Patient Education and Support Center and the Clinical Oncology Pastoral Education Program, dedicated to ministering to the spiritual and emotional needs of every cancer patient. The patient navigation program is an integral component of cancer care at Baylor. The Joan and Andy Horner family established the Horner Endowed Breast Cancer Patient Navigator with a $1 million gift, enabling Baylor to hire an additional patient navigator. Patient navigators help patients chart a course through cancer diagnosis and treatment by scheduling appointments, explaining treatment steps, tracking the patient’s progress, and providing emotional and spiritual support during this difficult time.
Award-winning actress and breast cancer survivor Diahann Carroll was the featured speaker at Celebrating Women.

Celebrating Women
In 2011, award-winning actress and breast cancer survivor Diahann Carroll was the featured speaker at Baylor Health Care System Foundation’s 12th annual Celebrating Women luncheon. The event, presented for the seventh consecutive year by Tom Thumb, raised $2 million to benefit Baylor Health Care System’s fight against breast cancer. Gifts to Celebrating Women were concentrated to create a Celebrating Women Education Fund, which will support the training of the next generation of nurses, oncologists, and breast surgeons.

Over the past 12 years, Celebrating Women has raised more than $18 million for the fight against breast cancer at Baylor. These gifts have ensured that women who pass through Baylor’s doors have access to advanced diagnostics, innovative research and technology, clinical excellence, and compassionate care. Thanks to the generosity of community members and corporate sponsors, Baylor is transforming the way breast cancer patients receive treatment:

• Through a gift made by Baron Cass and his children in honor of Baron’s wife, Darlene Cass, Baylor patients are ensured access to advanced digital equipment for a full range of breast imaging services. Baylor provided mammograms for more than 180,000 women in 2010 at breast imaging centers throughout the Metroplex.

• The generosity of Celebrating Women supporters has given women who are uninsured or underinsured access to the health care they need through the Celebrating Women Gift of Life Fund.

• Gifts to Celebrating Women have established the Celebrating Women Endowed Chair in Breast Cancer Research, held by Joyce O’Shaughnessy, MD. She is leading a national protocol to develop new breast cancer treatments. This gene sequencing trial could result in more personalized therapies and treatment options for current and future patients.

These projects have made Baylor an accredited destination center in the treatment of breast cancer. Through our investments today, we will secure the future health of our daughters and granddaughters.
Contact Information

Referrals
- Baylor Sammons Cancer Center at Dallas
 - Patient Navigation Program: 214.820.3535
- Physician ConsultLine: 1.800.9BAYLOR

Administration
- Alan M. Miller, MD, PhD: 214.820.2881
 - Medical Director, Baylor Sammons Cancer Center
- Jeaneene L. Jones, RN, FACHE: 214.820.2800
 - Vice President/Oncology, Baylor Health Care System
 - Chief Operating Officer, Baylor Sammons Cancer Center/Baylor Cancer Hospital
- Sylvia Coats: 214.820.3433
 - Director of Administration
- Jerry Hoggood, MBA, CHPS: 214.820.7833
 - Director/Oncology, Baylor Health Care System
- Marvin J. Stone, MD: 214.820.3445
 - Medical Director of Oncology
 - Medical Education, Quality, and Safety
- John McWhorter, MHA: 214.820.4141
 - President, Baylor University Medical Center
- Baylor Health Care System Foundation: 214.820.3136

Department of Oncology
- Alan M. Miller, MD, PhD: 214.820.2881
 - Chief of Oncology, Baylor Health Care System

Divisions
- Gynecologic Oncology:
 - C. Allen Stringer, Jr., MD, Director: 214.370.1300
- Medical Oncology and Other Internal Medical Subspecialties:
 - Robert G. Mennel, MD, Director: 214.820.9611
- Oncologic Pathology:
 - Daniel A. Savino, MD, Director: 214.820.2251
- Radiation Oncology:
 - Barry N. Wilcox, MD, Director: 214.370.1400
- Surgical Oncology:
 - John T. Preskitt, MD, Director: 214.820.6267

Cancer Center Programs
- Blood and Marrow Transplant Inpatient Services: 214.820.2744
 - Be The Match®: 214.820.4279
 - Outpatient Center: 214.370.1500
 - Cutaneous Lymphoma Clinic: 214.370.1500
 - Graft-Versus-Host Disease Clinic: 214.370.1500
- Clinical Oncology Research Coordination: 214.818.8471
- Darlene G. Cass Women’s Imaging Center: 214.820.2430
 - Diagnostic mammography
 - Screening mammography
- W.H. & Peggy Smith Breast Center: 214.820.9600
 - Breast cancer prevention research trials
 - Breast Care for Lifetime™
 - Breast health education
 - Personal risk evaluation
- Cancer Genetics Program:
 - Breast and ovarian: 214.820.9600
 - Gastrointestinal: 214.820.2692
- Integrative Medicine Program: 214.820.2608
- Liver and Pancreas Disease Center: 214.820.1756
- Lymphedema Prevention and Treatment Services: 214.820.6767
- Oncology Outpatient Clinic: 214.820.6767
 - Bone and Soft Tissue Tumor Clinic
 - Cardiology Services
 - Dental Clinic
 - FitSteps For Life®
 - Head and Neck Clinic
 - Physical Medicine and Rehabilitation
 - Radiology Services
 - Skin Cancer Screening Clinic
 - Skull Base Clinic
 - Speech Therapy
 - Supportive and Palliative Care Services

Research
- Clinical Oncology Research Coordination: 214.818.8471
- Baylor Institute for Immunology Research: 214.820.7450
 - Yong-Jun Liu, MD, PhD, Director
- Baylor Research Institute:
 - Michael A.E. Ramsay, MD, President
- Breast Cancer Prevention Research Trials:
 - Joyce A. O’Shaughnessy, MD, Director
- US Oncology/Texas Oncology Research:
 - Joanne L. Blum, MD, PhD, Site Leader

Support Services
- A. Webb Roberts Center for Continuing Education: 214.820.2317
- Cancer Registry: 214.820.3976
- Concierge Desk: 214.820.2617
- Marketing and Public Relations: 214.820.2116
- Ernie’s Appearance Center:
 - Prostheses and specialty care items for cancer patients
 - Nutraceuticals
- Sammons Events and Community Relations: 214.818.8473
- Screenings:
 - Head and neck cancer (April)
 - Prostate cancer (Sept)
 - Skin/melanoma (monthly)
- Smoking Cessation Program:
 - Dental Clinic–Oncology Outpatient Clinic: 214.820.6767
 - Martha Foster Lung Care Center: 214.820.9791
 - Tobacco Treatment Services at Texas A&M HSC Baylor College of Dentistry: 214.828.8379
- Virginia R. Cvetko Patient Education and Support Center:
 - Patient/family education and support programs
 - Patient resource centers/oncology libraries
- Baylor Valet Parking: 214.820.8077
- Patient Transport: 214.818.6400
Baylor Sammons Cancer Center is located on the campus of Baylor University Medical Center at Dallas, and is accessible from U.S. 75 (North Central Expressway/I-45) and I-30.

A map on the facing page illustrates highway access to the medical center.

Valet parking is available at the front entrance and other nearby locations.

Self-parking is conveniently located adjacent to Baylor Sammons Cancer Center in garage 4.

Self-parking for the new Baylor Cancer Hospital is available in garage 4 or valet in front of the hospital.

The campus is also accessible via the DART Green Line to Baylor University Medical Center station. Baylor Sammons Cancer Center is a two-block walk.