The good news is that we are slowly wearing our foe down, and each year we add more and more to our legion of cancer survivors.

Alan M. Miller, MD, PhD

Welcome to the Fight Club

The theme of this year’s Annual Report is “Fighters Wanted”. Unlike a fight club where the combatants fight each other, in this fight club we all fight a common opponent, cancer. The good news is that we are slowly wearing our foe down, and each year we add more and more to our legion of cancer survivors.

In the past year we have brought an array of new weapons to the fight. The advent of immunotherapy is changing the way we approach cancer treatment. The Baylor Charles A. Sammons Cancer Center is leading the way with clinical trials in immunotherapy. This past year has seen initiation of our first CAR-T trials which take the patient’s own immune cells, modify them in the lab and then reinfuse them to attack the cancer. We have also conducted exciting trials of vaccines developed in our own labs to fight breast cancer and pancreatic cancer. This research is conducted through our Research and Treatment Centers and with exciting collaborations like the one with TGEN, and support from grateful patients and wonderful organizations like Swim Across America.

Providing for the needs of our survivors becomes a new imperative for all of us who are participants in the fight game. In September we held our first annual Survivorship Summit. Inspired by our keynote speaker, Diane Hedidisian, we brought together a broad group of survivors, providers, care givers and supporters to strategize on how to best serve this population.

We identified five dimensions that define a survivorship program: Fitness and Rehabilitation, Body and Soul, What About My Family?, Cognition, and Transitions to Primary Care. Each of these dimensions are already active but the plan is to grow them and integrate them into a single program focused on the survivor. In this coming year we will see continued development of these efforts and provide what is needed, after the treatment ends.

So my final message is, Fight Onward, Survive, Thrive and Exchange Cancer Care for LIFE.

Alan M. Miller, MD, PhD
Chief of Oncology, Baylor Scott & White Health – North Texas
Medical Director, Baylor Charles A. Sammons Cancer Center at Dallas

*As of March 1, 2017, Dr. Alan Miller is no longer with Baylor Scott & White Health. Dr. Carlos Becerra is serving as interim chief of oncology for Baylor Scott & White – North Texas.
Service

Our outpatient social worker saw 468 patients/families in our office for concerns involving coping with their diagnosis, psychosocial evaluations, financial issues, housing, transportation, home health and hospice needs, distress screen interventions, and educational questions.

Our trained Cancer Survivor Network Volunteers made 386 patient visits in the hospital to newly diagnosed patients for support.

Our two full time and one part-time music practitioners played therapeutic music at the bedside for 4446 patient visits.

Our FitSteps® exercise program had 4983 patient visits (M-Th). They have added group classes to offer more options.

Our clinical psychologist, available by physician referral for help with adjustment to illness issues, has seen 573 patients from January to December 2016.

Our part-time Leukemia & Lymphoma Society Patient Advocate has assisted 425 patients & families.

Programs

The Cvetko Center offered a total of 428 programs in FY 2016, with 4318 participants attending. This included 14 cancer-specific support groups: Amyloid, Bladder-Kidney, Breast, Caregiver, General Cancer, GVHD, Lung, Myeloma, Neuro-Endocrine, Ovarian, Prostate, Oral Head and Neck, Survivors, and Waldenstrom’s.

A total of 561 participants attended our weekly chemo classes.

Our very popular Healthy Cooking Demonstration classes drew in 240 participants.

Annually, we offer a diverse variety of educational classes and programs including our Barrett Lectureship; Prostate, Ovarian and Breast cancer survivor luncheons; Young Adult Cancer Survivor conference; Complementary Therapies workshop; Cancer Survivor’s Week celebration in June; Nutrition classes; Relaxation and Journaling classes and Look-Good-Feel-Better® classes, to name a few.

Our Deborah Rodriguez Patient Resource Library has nearly 900 books on topics such as coping, disease specifics, healthy cooking, in addition to Bibles, and even novels for patients to check out. Additionally, there are numerous brochures from the American Cancer Society, Leukemia & Lymphoma Society, NCI, etc., available. We have three computers and a printer for patients and families to use for research, with suggested websites.

Our Integrative Medicine clinic is held on Tuesdays and Thursdays and had 438 patients in clinic for consultations, nutrition and acupuncture.
Since inception, Baylor Health Care System Foundation raised more than $90 million in support of our North Texas cancer initiatives. These funds have gone to support patient-centered programs; to develop innovative research to assist us in the diagnosis and treatment of cancer for current, and future generations; to purchase innovative technology and capital equipment that advance therapies and nurture healing; and to prepare dedicated cancer specialists through graduate and undergraduate medical education programs.

Thanks to the generosity of philanthropic leaders in our community, we are moving mountains for our patients who entrust us with their lives, their families, and the communities we serve. Together, we are improving lives in Dallas – and beyond – in tangible, lasting ways.

Thanks to the generosity of philanthropic leaders in our community, we are moving mountains for our patients who entrust us with their lives, their families, and the communities we serve. Together, we are improving lives in Dallas – and beyond – in tangible, lasting ways. Thanks to the generosity of philanthropic leaders in our community, we are moving mountains for our patients who entrust us with their lives, their families, and the communities we serve. Together, we are improving lives in Dallas – and beyond – in tangible, lasting ways. Thanks to the generosity of philanthropic leaders in our community, we are moving mountains for our patients who entrust us with their lives, their families, and the communities we serve. Together, we are improving lives in Dallas – and beyond – in tangible, lasting ways. Thanks to the generosity of philanthropic leaders in our community, we are moving mountains for our patients who entrust us with their lives, their families, and the communities we serve. Together, we are improving lives in Dallas – and beyond – in tangible, lasting ways.

I think Hope Lodge will be a wonderful space where cancer patients can feel comfortable and concentrate on getting better. — Trudy Steen, Don and Trudy Steen Charitable Foundation
2016 Celebrating Women Luncheon Raised $1.8 Million for Baylor’s Fight Against Breast Cancer

On October 20, Baylor Health Care System Foundation celebrated the 17th annual Celebrating Women luncheon. The 2016 luncheon, presented by Tom Thumb for the 12th consecutive year, raised $1.8 million to benefit Baylor Scott & White Health’s fight against breast cancer in North Texas.

Since the first Celebrating Women luncheon in 2000, more than $28 million has been raised to support breast cancer initiatives at Baylor Scott & White Health – North Texas. Donations to Celebrating Women have supported advanced diagnostic equipment, innovative clinical research, and most importantly, safe, quality, compassionate care for North Texas patients and families.

“Thanks to generous support we’ve received over the past 16 years, we are not just cheering on breast cancer patients from the sidelines. We are actively fighting alongside them,” said Rowland K. “Robin” Robinson, Foundation president.

“Every donation in support of Celebrating Women has had a positive ripple effect on breast cancer treatment and care for our patients and their families. It’s truly inspiring to see our community come together year after year with such tremendous enthusiasm for this cause – one that touches us all.”

Breast cancer survivor and multi-talented actress, producer, writer and singer, Rita Wilson, was the featured speaker. In March 2015, Rita was diagnosed with breast cancer, and since then has shared her inspiring story with the world. During a Q&A session, in which she was interviewed by Robin, she discussed her family, career highlights, and her breast cancer diagnosis and journey. For those in the audience just starting their journey with the disease, Wilson advised, “Trust your instincts and your gut. Don’t be afraid to ask for a second opinion, for your doctor or for your pathology. For those going through treatment or are about to go through treatment, I know it feels like it’s never going to be anything other than what you’re doing, and what that life is, but there is a light at the end of the tunnel. You’re going to be able to see that light sooner than you think.”

Olympians and Cancer Survivors Team Up to Fight Cancer, Make Waves at Swim Across America – Dallas

In 2017, nearly 1,700,000 cases of cancer will be diagnosed in the US. This staggering statistic offers compelling proof of the need to continue devising new approaches to research and treatment.

Brought to North Texas in 2011 by Olympian swimmers, Swim Across America – Dallas provides a rare opportunity for cancer survivors, former members of the U.S. Olympic Swim Team and hundreds of swimmers of all skill levels to make an impact on cancer research locally. The sixth annual swim raised $210,000 for the Swim Across America Innovative Clinical Trials Center (ICTC) at the Baylor Charles A. Sammons Cancer Center at Dallas.

“Olympians are always all in when it comes to fighting cancer. We were thrilled to partner with Swim Across America to bring Olympic and Paralympic swimmers to North Texas for this cause,” said Dr. Bride Miller, chief medical officer, Swim Across America. “Swimming is the perfect activity, the perfect sport to get people outside and moving, and get them thinking about fitness and how to live a healthy lifestyle.”

Since the first event in 2011, SAA—Dallas has contributed more than $2 million to Baylor Health Care System Foundation to fund advanced cancer research at the ICTC. Through these trials, we truly are changing lives as many more patients are given hope for a cure.
Cancer Research and Treatment Centers

Since the fall of 2014, Baylor University Medical Center at Dallas has seen the implementation of eight highly specialized Research and Treatment Centers designed to apply advanced medicine, clinical research, and targeted therapies to specific cancer types. These centers were developed under the leadership of appointed medical directors with integral support from ancillary service areas.

Our multidisciplinary tumor conferences are central to the development of our Research and Treatment Centers. Integral to the delivery of excellent care is the strong clinical focus on delivering to each patient a consistent guideline and protocol-driven care plan. The Sammons Oncology Clinical Research Database (SOCRE) is an information system for collecting at the point of care accurate and validated data that documents that the right care is delivered to the right patient at the right time.

Embedded in the construct of these centers are the following:

- Multidisciplinary team of clinical experts
- Tumor conferences with prospective presentation of patient cases
- Focus on key quality indicators
- Advanced research database
- Active clinical trials

Every patient will receive a personalized plan of care, which is discussed with a team of multidisciplinary experts at our cancer conferences where we collaboratively evaluate and recommend the most appropriate treatment plan for each unique patient. “In one place, we’ve assembled expertise across multiple medical disciplines to come up with a treatment plan that is specific for the individual patient and the characteristics of his or her tumor” says Dr. Thomas Hutson, co-medical director of the Geri有序en Cancer Research and Treatment Center.

To learn more about these centers, please visit BaylorHealth.com/DallasCancer, or call 214.820.3355.
The Healing Intersection: Where the Arts Meet Medicine

Most individuals waging their personal battle against cancer employ the expertise of their physicians and caregivers with an arsenal of weapons—chemotherapy, radiation therapy, surgery, gene therapy and more. Patients at the Baylor Charles A. Sammons Cancer Center and the T. Boone Pickens Cancer Hospital at Baylor University Medical Center at Dallas have an additional resource to use in their fight—the arts.

The Arts in Medicine program offered through the Ceviko Patient Resource Center at Baylor Dallas is underwritten by donations from foundations and individual donors. Begun in July 2015 with a $1.5 million grant from the Paula Walker Fund through individual donors, the program offers a variety of therapeutic arts activities and events including:

- Art therapy
- Art-in-residence
- Art studio
- Art carts
- Music therapy
- Music practitioners
- Read-aloud program
- Performance series
- Exhibitions and shows
- Art curator and Art Advisory Council
- Evening with the Artist series

Barney Barnett, coordinator of the Arts in Medicine program, has been a musician since early childhood. A jack-of-all-trades, Barnett retired from the Marine Corps after 30 years of service, and treatment with the gamma knife, today she

Benny Barrett, coordinator of the Arts in Medicine program

For 30-year-old Wendy Eveready, the Arts in Medicine program at Baylor Dallas has been life changing. The Grand Prairie mother of one was diagnosed with renal cell carcinoma in December 2015. The cancer spread to her lung and brain.

At the art studio. An art therapist showed me around and I got hooked. I had never picked up a paintbrush before, but the minute I walked into the studio, I discovered a creative side of myself. The whole thing has transformed me and I’m going to have an exhibition of my art at the hospital. The show will include a variety of paintings, each with a story about my journey, what I was thinking when I drew the painting, how I was feeling at the time. Some paintings are dedicated to the people that have meant so much to me—my doctors, my husband, the art staff and others. I’m here in the art studio—guitars, harps and our music therapist with her mobile wagon of instruments for patient and staff interaction. I feel blessed to work with so many talented people.

Research conducted by Americans for the Arts demonstrates that creative arts in health care interventions can contribute to the following positive outcomes when services are integrated into medical treatment and community prevention and wellness programs:

- Reduced lengths of hospital stays
- Decreased need for multiple medical visits
- Decreased reports of pain and anxiety related to illness and invasive treatment
- Increased self-esteem and reductions in stress
- Reduced healthcare-related infection rates
- Decreased need for use of sedatives during medical procedures
- Reduced use of depression and improvements in quality of life
- Decreased use of medical interventions covered by Medicare among the aging.

Bringing arts and medicine together and uniting them in the soul of the patient is almost miraculous. I couldn’t be happier with the acceptance of the program by patients, family members and medical center staff.
The Baylor University Medical Center Blood and Marrow Transplant Program (BMT) had another strong and successful year in 2016.

The team celebrated the addition of a new physician to the team (Jana Reynolds, MD) as well as the retirement of one of the program's founding physicians (Joseph Fay, MD). Haploidentical transplantation expertise and volumes continued to grow over the course of the year and were aided by the new director of the Transplant Immunology Lab, Medhat Askar, MD. The program continued to maintain outreach clinics in Abilene, Longview, Fort Worth and Waco. Ongoing emphasis on clinical process improvement and patient survival resulted in further enhancements to 100-day and 1-year patient survival. New initiatives included a pilot of telehealth capabilities as well as a post-1 year survivor program. The Baylor Dallas BMT Program celebrated these successes with over 200 former patients and families at the annual BMT patient reunion in September.

<table>
<thead>
<tr>
<th>Measure</th>
<th>2016 Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of participants in Arts in Medicine program</td>
<td>6,088</td>
</tr>
<tr>
<td>Number of participants in music practitioner sessions</td>
<td>4,249</td>
</tr>
<tr>
<td>Number of patients who participated in Arts in Medicine program</td>
<td>3,267</td>
</tr>
<tr>
<td>Number of performing arts events at the BUMC campus</td>
<td>615</td>
</tr>
<tr>
<td>Number of participants in art therapy sessions</td>
<td>203</td>
</tr>
<tr>
<td>Number of hospital units/areas that referred patients to the Arts in Medicine program</td>
<td>18</td>
</tr>
</tbody>
</table>
Creating New Immune Therapies Against Cancer

For more than 20 years, Baylor University Medical Center at Dallas and Baylor Institute for Immunology Research (BIIR) have successfully pursued immune therapies to treat cancer. These therapies aim to unlock the power of the human immune system, unleashing it to seek and destroy cancer cells.

These therapies include:

- **Cancer Vaccines**
 - Since its inception in 1996, BIIR has been at the forefront of developing vaccines to treat cancer. Cancer vaccines are therapies designed to combat tumors that form from genetic mutations inside the body. Baylor Dallas and BIIR have been leading sites for the study of a particular type of immune cell called the dendritic cell, a key component of the immune system that is essential in cancer vaccines because of its capacity to capture, process, and present antigens to T cells, which in turn attack the cancer.
 - BIIR’s cancer vaccines are based on the discovery that it is possible to extract blood from a patient, treat the dendritic cells, sensitize them to tumor-specific antigens and then inject them back into that same patient to elicit a cellular response, essentially teaching T cells to kill the cancer. In recent years, including 2016, studies have contributed to an increased understanding of dendritic cell biology, including the existence of distinct subsets with specific functions and the distinct molecular mechanism that dendritic cells use to regulate the immune response.
 - BIIR researchers have found that fusing antibodies with tumor cell-specific antigens produces a vaccine with broader applications, at lower cost, and available to a wide range of patients. BIIR has been refining this technology for more than a decade with support from the National Institutes of Health, and is preparing to take this approach to Baylor Dallas clinical trials for head and neck cancer, breast cancer, and pancreatic cancer.

- **Chimeric antigen receptor (CAR) T cells**
 - Chimeric antigen receptor (CAR) T cells – T cells removed from a patient or donor and engineered in the laboratory to produce CARs on the cell surface which provide the immune system with a new way to recognize and kill cancer.
 - CAR T cells are among the most promising approaches to fighting cancer, especially blood cancers, through the development of adoptive cell transfer therapies. They represent a dynamic new line of therapies for blood cancers that have repeatedly relapsed after intensive chemotherapy or have simply failed to respond to standard therapies.
 - In 2016, studies have contributed to an increased understanding of dendritic cell biology, including the existence of distinct subsets with specific functions and the distinct molecular mechanism that dendritic cells use to regulate the immune response.

- **Immune checkpoint inhibitors**, which unlock cancer cells, enabling the immune system to resume its job of clearing the body of disease.
 - Immunology Research (BIIR) have successfully provided new alternatives in cancer therapy, especially for patients with blood cancers, such as leukemia and lymphoma.
 - Baylor Dallas and BIIR researchers believe that in the future immunotherapy and genomic therapies will be used in combination, either in sequence or simultaneously, to treat cancer.

Cancer Vaccines

Since its inception in 1996, BIIR has been at the forefront of developing vaccines to treat cancer. Cancer vaccines are therapies designed to combat tumors that form from genetic mutations inside the body. Baylor Dallas and BIIR have been leading sites for the study of a particular type of immune cell called the dendritic cell, a key component of the immune system that in preclinical testing at Baylor Dallas for head and neck cancer, breast cancer, and pancreatic cancer.

Clinical Research/Trials

Clinical Trials Using CAR T Cells

Chimeric antigen receptor (CAR) T cells are molecularly engineered in the laboratory using a hybrid of proteins grafted onto a patient’s T cells. They are the latest form of cancer therapies aimed at re-establishing the body’s immune response to cancer cells, enabling the immune system to seek and destroy cancer cells.

BIIR has been leading sites for the study of a particular type of immune cell called the dendritic cell, a key component of the immune system that is essential in cancer vaccines because of its capacity to capture, process, and present antigens to T cells, which in turn attack the cancer.

BIIR’s cancer vaccines are based on the discovery that it is possible to extract blood from a patient, treat the dendritic cells, sensitize them to tumor-specific antigens and then inject them back into that same patient to elicit a cellular response, essentially teaching T cells to kill the cancer. In recent years, including 2016, studies have contributed to an increased understanding of dendritic cell biology, including the existence of distinct subsets with specific functions and the distinct molecular mechanism that dendritic cells use to regulate the immune response.

BIIR researchers have found that fusing antibodies with tumor cell-specific antigens produces a vaccine with broader applications, at lower cost, and available to a wide range of patients. BIIR has been refining this technology for more than a decade with support from the National Institutes of Health, and is preparing to take this approach to Baylor Dallas clinical trials for head and neck cancer, breast cancer, and pancreatic cancer.

BIIR Dallas has also been a leader in dendritic cell vaccine development for women with triple-negative breast cancer (TNBC). The goal of the trial was to create personalized vaccines using each patient’s own immune cells. The approach was to introduce the vaccine while patients were still in a potentially curative setting, before the cancer became metastatic and spread to other parts of their bodies. Of the ten women originally enrolled in the trial and first receiving a dose of the vaccine in Dec. 2013, seven remain without any detectable disease, one had disease recurrence and two died from disease recurrence. The surviving women remain in the trial in a follow-up phase, waiting to see if they remain cancer-free.

Clinical Trials Using CAR T Cells

Baylor Dallas began clinical trials involve CAR T cells targeted at acute lymphoblastic leukemia (ALL) and mantle cell lymphoma (MCL). Both ALL and MCL are B-cell malignancies that express an antigen called CD19. CAR T cells in these clinical trials are modified lymphocytes with artificial T cell receptors specifically engineered to target cancer cells that produce CD19.

Clinical Trials Using CAR T Cells

Baylor Dallas began clinical trials involving CAR T-cell trials for acute lymphoblastic leukemia (ALL) and mantle cell lymphoma (MCL). Both ALL and MCL are B-cell malignancies that express an antigen called CD19. CAR T cells in these clinical trials are modified lymphocytes with artificial T cell receptors specifically engineered to target cancer cells that produce CD19.
In 2015, the two-year Medical Oncology Fellowship program at Baylor University Medical Center at Dallas became a three-year combined Hematology Medical Oncology Fellowship program. The ACGME accredited program provides clinical training in all aspects of hematology and oncology. Fellows are afforded the opportunity to work with and interact with a comprehensive array of other medical specialties—pathology, radiology, internal medicine and associated sub-specialties, surgery and related sub-specialties. The program celebrated its 40th anniversary in 2016, counting more than 70 internal medicine physicians who have completed the Oncology Fellowship program and have gone on to work in various cancer specialty areas.

“We are proud of the Oncology Fellowship program’s history and the respect it has earned throughout the medical community,” Micah Burch, MD, associate director of the Hematology Oncology Fellowship program and a physician on the medical staff of Baylor Dallas, says. “The program’s proud history has bolstered the respect it has gained across the medical community. In 2016, we continued to see an increased interest in the program and the enhanced caliber of the applicants seeking admission to the program. This is due, in part, to moving to a three-year combined program.”

Jointly sponsored by Texas Oncology and Baylor Dallas, the Hematology Oncology Fellowship program accepts two physicians each year from a pool of 100 applicants, 20 of whom have been interviewed by the selection committee. “The selection and matching process is similar to that followed by medical school graduates when they apply for a residency program,” explains Dr. Burch. “Each member of the selection committee ranks the 20 interviewees. The interviewees also rank the Fellowship programs in which they are interested. In early December, a computer program matches candidates to Fellowship programs.”

Hematology Oncology Fellows round with different attending physicians on the medical staff at Baylor Dallas in the hospital and in the clinic each month, providing them with a comprehensive view of hematology and oncology. Within the first six of months of their first year, we try to expose them to research opportunities that are available in their special areas of interest,” says Dr. Burch. “This may involve breast, lung and other types of cancers. We focus on involving every Fellow in a research project that generally includes some type of quality improvement. By the time they complete the three year program, the Fellows have learned every aspect of oncology and hematology, including radiation oncology, gynecologic oncology and hematology, just to name a few. They are also given the chance to teach and give didactic lectures. Graduates of the program are board eligible for both hematology and oncology.”

The program’s proud history has bolstered the respect it has gained across the medical community. In 2016, we continued to see an increased interest in the program and the enhanced caliber of the applicants seeking admission to the program.

Micah Burch, MD
Associate director of the Hematology Oncology Fellowship program
Background

Lung cancer is the second most frequently diagnosed cancer in the United States and is the leading cause of cancer-related death among men and women in the US. Lung cancer accounts for approximately a quarter of all cancer diagnoses, and it is projected to account for 1 in 4 deaths from cancer in 2017. Unfortunately, most lung cancer does not present with symptoms until it reaches an advanced stage when cure is not possible. For patients with stage I non–small cell lung cancer, surgery is the treatment of choice. Traditionally, pulmonary resection for lung cancer was performed through a thoracotomy (open) incision. This required dividing the overlying chest wall muscles and spreading the ribs. The rib spreading in particular causes significant pain, challenges a patient’s pulmonary toilet, and clearly prolongs recovery. Recently, a minimally invasive resection technique has been developed called video-assisted thoracic surgery (VATS) that uses telescopic visualization and porthole incisions (2 cm in length) to perform lobectomy, the gold standard for pulmonary resection in lung cancer. This technique avoids damaging the overlying chest wall muscles and spreading the ribs. The first VATS lobectomy was performed in 1994. In recent years, the utilization of VATS lobectomy has increased both in the United States and abroad. Numerous studies have shown fewer complications with the use of VATS compared with open lobectomy and similar or better oncologic outcomes. Positive improvements included lower overall complication rates, less blood loss, lower pain scores, and shorter length of stay for VATS versus open resection. Importantly, all studies suggest equal or improved oncologic outcomes. Despite the fact that the oncologic equivalence of VATS versus open lobectomy has been established in the literature and there can be no debate that VATS is less invasive, open thoracotomy is still performed throughout the United States for tumors amenable to a minimally invasive approach. Barriers to further adoption of VATS lobectomy are clearly related to deficiencies in surgical training. Many surgeons finished their thoracic surgical training before the VATS lobectomy procedure was developed, and they have not updated themselves in advanced VATS techniques; therefore, they are not comfortable performing this challenging operation through telescopic incisions. In general, the thoracic surgery community does not think that open thoracotomy for stage I lung cancer represents the best care for patients. While patient or technical considerations may preclude the universal use of VATS lobectomy, early stage (stage I) lung cancers should be resected or at least attempted through a minimally invasive procedure. At Baylor University Medical Center at Dallas, every patient undergoing lobectomy is evaluated for a minimally invasive procedure. It is expected that stage I cancers can be removed by VATS when anatomically feasible. Therefore, the goal of this study was to determine the rate of VATS use for patients undergoing resection for stage I lung cancer at Baylor Dallas compared with the national average, with the hope of increasing the utilization of this technique.

Methods

The Baylor Scott & White Health Cancer Registry provided data on all lung cancer procedures were classified based on the Facility Oncology Registry Data Standards. The surgical approach for lobectomy was confirmed by review of electronic medical records for all patients with clinical stage I lung cancer.

Results

Between January 1, 2013, and December 31, 2015, 106 patients underwent surgery for lung cancer. The majority of these patients (116, 59%) had clinical stage I disease (Figure 1). Patient or technical considerations may preclude the utilization of this technique. More than three-quarters of the procedures were lobectomies or bilobectomies, followed by wedge resection, pneumonectomies, and segmental resections (Figure 2). A total of 69 stage I patients underwent lobectomy/bilobectomy, of whom 63, or 91%, had a VATS lobectomy but converted to an open procedure. There were so few Open procedures performed, it was not possible to demonstrate trends in utilization of VATS. Figure 3. In 6 of the 63 patients who underwent VATS, the surgeon started the lobectomy using VATS but converted to an open thoracotomy to safely complete the procedure. Baylor Dallas’s 91% VATS rate compares favorably to the 61.1% national average reported by the Society of Thoracic Surgeons during the same time period.
Conclusions

VATS is the standard of care for surgery for stage I lung cancer when technical and safety considerations allow. At Baylor University Medical Center, 91% of all lobectomies for clinical stage I lung cancer were performed using VATS, which compares favorably to national standards.

References

![Figure 1. Stages for lung cancer patients undergoing surgical procedures at Baylor University Medical Center at Dallas.](source: BSWH Cancer Registry)

![Figure 2. Types of surgical procedures for patients with all stages of lung cancer.](source: BSWH Cancer Registry)

![Figure 3. Surgical approach used in 69 patients with stage I lung cancer.](source: BSWH Cancer Registry)

Cancer Registry

Breast Cancer

CSC Score of 90 or more
 Rate

CoC Census Region %
 Performance Rate

All CoC
 Performance Rate

Baylor Surgery Center at Dallas
 Performance Rate

NCDB Target

CoC State of Texas

Centralized

G-10RLN: At least 10 regional lymph nodes are removed and pathologically examined for resected gastric cancer (Quality Improvement Measure-Released Fall 2014)

Prostate Cancer

LMSR: At least 3 lymph nodes are removed and pathologically examined for AJCC Stage IVA, VB, VC, and VD resected NSCLC (Surveillance Measure-Released Fall 2014)

ENDCTRT: Chemotherapy and/or radiation administered to patients with Stage IIIC or IV endometrial cancer (Surveillance Measure-Released Spring 2015)

ENDCRT: Chemotherapy and/or radiation administered to patients with Stage IIIC or IV colorectal cancer (Surveillance Measure-Released Fall 2015)

ENDCRTC: Chemotherapy and/or radiation administered to patients with Stage IIIC or IV rectal cancer (Surveillance Measure-Released Fall 2015)

ENDCRTC: Chemotherapy and/or radiation administered to patients with Stage IIIC or IV prostate cancer (Surveillance Measure-Released Fall 2015)

OVAR: Ovarian cancer (Surveillance Measure-Released Fall 2015)

GI-10RLN: At least 10 regional lymph nodes are removed and pathologically examined (Quality Improvement Measure-Released Fall 2014)

GI-15RLN: At least 15 regional lymph nodes are removed and pathologically examined (Quality Improvement Measure-Released Fall 2014)

GI-10RLN: At least 10 regional lymph nodes are removed and pathologically examined (Quality Improvement Measure-Released Fall 2014)

NSCLC: Non Small Cell Lung Cancer

The facility did not have data to measure these metrics.

Source: Data is pending results by the Rapid Quality Reporting Process via the National Cancer Data Base.

**The facility did not have data to measure these metrics.

The facility did not have data to measure these metrics.

The facility did not have data to measure these metrics.

The facility did not have data to measure these metrics.

The facility did not have data to measure these metrics.

The facility did not have data to measure these metrics.

The facility did not have data to measure these metrics.

The facility did not have data to measure these metrics.

The facility did not have data to measure these metrics.

The facility did not have data to measure these metrics.

The facility did not have data to measure these metrics.

The facility did not have data to measure these metrics.

The facility did not have data to measure these metrics.

The facility did not have data to measure these metrics.

The facility did not have data to measure these metrics.

The facility did not have data to measure these metrics.

The facility did not have data to measure these metrics.

The facility did not have data to measure these metrics.

The facility did not have data to measure these metrics.

The facility did not have data to measure these metrics.

The facility did not have data to measure these metrics.

The facility did not have data to measure these metrics.

The facility did not have data to measure these metrics.

The facility did not have data to measure these metrics.

The facility did not have data to measure these metrics.

The facility did not have data to measure these metrics.

The facility did not have data to measure these metrics.

The facility did not have data to measure these metrics.

The facility did not have data to measure these metrics.

The facility did not have data to measure these metrics.

The facility did not have data to measure these metrics.

The facility did not have data to measure these metrics.

The facility did not have data to measure these metrics.

The facility did not have data to measure these metrics.

The facility did not have data to measure these metrics.

The facility did not have data to measure these metrics.

The facility did not have data to measure these metrics.

The facility did not have data to measure these metrics.

The facility did not have data to measure these metrics.

The facility did not have data to measure these metrics.

The facility did not have data to measure these metrics.

The facility did not have data to measure these metrics.

The facility did not have data to measure these metrics.

The facility did not have data to measure these metrics.

The facility did not have data to measure these metrics.

The facility did not have data to measure these metrics.

The facility did not have data to measure these metrics.

The facility did not have data to measure these metrics.